Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sven E. F. Borgos is active.

Publication


Featured researches published by Sven E. F. Borgos.


Journal of Bacteriology | 2004

In Vivo Analysis of the Regulatory Genes in the Nystatin Biosynthetic Gene Cluster of Streptomyces noursei ATCC 11455 Reveals Their Differential Control Over Antibiotic Biosynthesis

Olga N. Sekurova; Trygve Brautaset; Håvard Sletta; Sven E. F. Borgos; Øyvind M. Jakobsen; Trond Erling Ellingsen; Arne R. Strøm; Svein Valla; Sergey B. Zotchev

Six putative regulatory genes are located at the flank of the nystatin biosynthetic gene cluster in Streptomyces noursei ATCC 11455. Gene inactivation and complementation experiments revealed that nysRI, nysRII, nysRIII, and nysRIV are necessary for efficient nystatin production, whereas no significant roles could be demonstrated for the other two regulatory genes. To determine the in vivo targets for the NysR regulators, chromosomal integration vectors with the xylE reporter gene under the control of seven putative promoter regions upstream of the nystatin structural and regulatory genes were constructed. Expression analyses of the resulting vectors in the S. noursei wild-type strain and regulatory mutants revealed that the four regulators differentially affect certain promoters. According to these analyses, genes responsible for initiation of nystatin biosynthesis and antibiotic transport were the major targets for regulation. Data from cross-complementation experiments showed that nysR genes could in some cases substitute for each other, suggesting a functional hierarchy of the regulators and implying a cascade-like mechanism of regulation of nystatin biosynthesis.


Antimicrobial Agents and Chemotherapy | 2004

Chemical Diversity of Polyene Macrolides Produced by Streptomyces noursei ATCC 11455 and Recombinant Strain ERD44 with Genetically Altered Polyketide Synthase NysC

Per Bruheim; Sven E. F. Borgos; Pascale Tsan; Håvard Sletta; Trond E. Ellingsen; Jean-Marc Lancelin; Sergey B. Zotchev

ABSTRACT The gram-positive bacterium Streptomyces noursei ATCC 11455 produces a complex mixture of polyene macrolides generally termed nystatins. Although the structures for nystatins A1 and A3 have been reported, the identities of other components of the nystatin complex remain obscure. Analyses of the culture extract from the S. noursei wild type revealed the presence of several nystatin-related compounds for which chemical structures could be suggested on the basis of their molecular weights, their UV spectra, and knowledge of the nystatin biosynthetic pathway. Nuclear magnetic resonance (NMR) studies with one of these polyene macrolides identified it as a nystatin analogue containing a mycarose moiety at C-35. A similar investigation was performed with the culture extract of the ERD44 mutant, which has a genetically altered polyketide synthase (PKS) NysC and which was previously shown to produce a heptaene nystatin analogue. The latter compound, tentatively named S44HP, and its derivative, which contains two deoxysugar moieties, were purified; and their structures were confirmed by NMR analysis. Nystatin analogues with an expanded macrolactone ring were also observed in the extract of the ERD44 mutant, suggesting that the altered PKS can “stutter” during the polyketide chain assembly. These data provide new insights into the biosynthesis of polyene macrolide antibiotics and the functionalities of PKSs and post-PKS modification enzymes.


Marine Drugs | 2009

Violacein-producing Collimonas sp. from the sea surface microlayer of costal waters in Trøndelag, Norway.

Sigrid Hakvåg; Espen Fjærvik; Geir Klinkenberg; Sven E. F. Borgos; Kjell D. Josefsen; Trond E. Ellingsen; Sergey B. Zotchev

A new strain belonging to the genus Collimonas was isolated from the sea surface microlayer off the coast of Trøndelag, Norway. The bacterium, designated Collimonas CT, produced an antibacterial compound active against Micrococcus luteus. Subsequent studies using LC-MS identified this antibacterial compound as violacein, known to be produced by several marine-derived bacteria. Fragments of the violacein biosynthesis genes vioA and vioB were amplified by PCR from the Collimonas CT genome and sequenced. Phylogenetic analysis of these sequences demonstrated close relatedness of the Collimonas CT violacein biosynthetic gene cluster to those in Janthinobacterium lividum and Duganella sp., suggesting relatively recent horizontal gene transfer. Considering diverse biological activities of violacein, Collimonas CT shall be further studied as a potential producer of this compound.


Chemistry & Biology | 2008

Improved Antifungal Polyene Macrolides via Engineering of the Nystatin Biosynthetic Genes in Streptomyces noursei

Trygve Brautaset; Håvard Sletta; Aina Nedal; Sven E. F. Borgos; Kristin F. Degnes; Ingrid Bakke; Olga Volokhan; Olga N. Sekurova; Ivan D. Treshalin; Elena P. Mirchink; Alexander Dikiy; Trond E. Ellingsen; Sergey B. Zotchev

Seven polyene macrolides with alterations in the polyol region and exocyclic carboxy group were obtained via genetic engineering of the nystatin biosynthesis genes in Streptomyces noursei. In vitro analyses of the compounds for antifungal and hemolytic activities indicated that combinations of several mutations caused additive improvements in their activity-toxicity properties. The two best analogs selected on the basis of in vitro data were tested for acute toxicity and antifungal activity in a mouse model. Both analogs were shown to be effective against disseminated candidosis, while being considerably less toxic than amphotericin B. To our knowledge, this is the first report on polyene macrolides with improved in vivo pharmacological properties obtained by genetic engineering. These results indicate that the engineered nystatin analogs can be further developed into antifungal drugs for human use.


Applied and Environmental Microbiology | 2007

Analysis of the Mycosamine Biosynthesis and Attachment Genes in the Nystatin Biosynthetic Gene Cluster of Streptomyces noursei ATCC 11455

Aina Nedal; Håvard Sletta; Trygve Brautaset; Sven E. F. Borgos; Olga N. Sekurova; Trond E. Ellingsen; Sergey B. Zotchev

ABSTRACT The polyene macrolide antibiotic nystatin produced by Streptomyces noursei contains a deoxyaminosugar mycosamine moiety attached to the C-19 carbon of the macrolactone ring through the β-glycosidic bond. The nystatin biosynthetic gene cluster contains three genes, nysDI, nysDII, and nysDIII, encoding enzymes with presumed roles in mycosamine biosynthesis and attachment as glycosyltransferase, aminotransferase, and GDP-mannose dehydratase, respectively. In the present study, the functions of these three genes were analyzed. The recombinant NysDIII protein was expressed in Escherichia coli and purified, and its in vitro GDP-mannose dehydratase activity was demonstrated. The nysDI and nysDII genes were inactivated individually in S. noursei, and analyses of the resulting mutants showed that both genes produced nystatinolide and 10-deoxynystatinolide as major products. Expression of the nysDI and nysDII genes in trans in the respective mutants partially restored nystatin biosynthesis in both cases, supporting the predicted roles of these two genes in mycosamine biosynthesis and attachment. Both antifungal and hemolytic activities of the purified nystatinolides were shown to be strongly reduced compared to those of nystatin, confirming the importance of the mycosamine moiety for the biological activity of nystatin.


BMC Systems Biology | 2013

Mapping global effects of the anti-sigma factor MucA in Pseudomonas fluorescens SBW25 through genome-scale metabolic modeling

Sven E. F. Borgos; Sergio Bordel; Håvard Sletta; Helga Ertesvåg; Øyvind Mejdell Jakobsen; Per Bruheim; Trond E. Ellingsen; Jens Nielsen; Svein Valla

BackgroundAlginate is an industrially important polysaccharide, currently produced commercially by harvesting of marine brown sea-weeds. The polymer is also synthesized as an exo-polysaccharide by bacteria belonging to the genera Pseudomonas and Azotobacter, and these organisms may represent an alternative alginate source in the future. The current work describes an attempt to rationally develop a biological system tuned for very high levels of alginate production, based on a fundamental understanding of the system through metabolic modeling supported by transcriptomics studies and carefully controlled fermentations.ResultsAlginate biosynthesis in Pseudomonas fluorescens was studied in a genomics perspective, using an alginate over-producing strain carrying a mutation in the anti-sigma factor gene mucA. Cells were cultivated in chemostats under nitrogen limitation on fructose or glycerol as carbon sources, and cell mass, growth rate, sugar uptake, alginate and CO2 production were monitored. In addition a genome scale metabolic model was constructed and samples were collected for transcriptome analyses. The analyses show that polymer production operates in a close to optimal way with respect to stoichiometric utilization of the carbon source and that the cells increase the uptake of carbon source to compensate for the additional needs following from alginate synthesis. The transcriptome studies show that in the presence of the mucA mutation, the alg operon is upregulated together with genes involved in energy generation, genes on both sides of the succinate node of the TCA cycle and genes encoding ribosomal and other translation-related proteins. Strains expressing a functional MucA protein (no alginate production) synthesize cellular biomass in an inefficient way, apparently due to a cycle that involves oxidation of NADPH without ATP production. The results of this study indicate that the most efficient way of using a mucA mutant as a cell factory for alginate production would be to use non-growing conditions and nitrogen deprivation.ConclusionsThe insights gained in this study should be very useful for a future efficient production of microbial alginates.


Antimicrobial Agents and Chemotherapy | 2005

Nystatin Biosynthesis and Transport: nysH and nysG Genes Encoding a Putative ABC Transporter System in Streptomyces noursei ATCC 11455 Are Required for Efficient Conversion of 10-Deoxynystatin to Nystatin

Håvard Sletta; Sven E. F. Borgos; Per Bruheim; Olga N. Sekurova; Hans Grasdalen; Randi Aune; Trond E. Ellingsen; Sergey B. Zotchev

ABSTRACT The genes nysH and nysG, encoding putative ABC-type transporter proteins, are located at the flank of the nystatin biosynthetic gene cluster in Streptomyces noursei ATCC 11455. To assess the possible roles of these genes in nystatin biosynthesis, they were inactivated by gene replacements leading to in-frame deletions. Metabolite profile analysis of the nysH and nysG deletion mutants revealed that both of them synthesized nystatin at a reduced level and produced considerable amounts of a putative nystatin analogue. Liquid chromatography-mass spectrometry and nuclear magnetic resonance structural analyses of the latter metabolite confirmed its identity as 10-deoxynystatin, a nystatin precursor lacking a hydroxyl group at C-10. Washing experiments demonstrated that both nystatin and 10-deoxynystatin are transported out of cells, suggesting the existence of an alternative efflux system(s) for the transport of nystatin-related metabolites. This notion was further corroborated in experiments with the ATPase inhibitor sodium o-vanadate, which affected the production of nystatin and 10-deoxynystatin in the wild-type strain and transporter mutants in a different manner. The data obtained in this study suggest that the efflux of nystatin-related polyene macrolides occurs through several transporters and that the NysH-NysG efflux system provides conditions favorable for C-10 hydroxylation.


Metabolomics | 2013

Investigating alginate production and carbon utilization in Pseudomonas fluorescens SBW25 using mass spectrometry-based metabolic profiling

Stina K. Lien; Håvard Sletta; Trond E. Ellingsen; Svein Valla; Elon Correa; Royston Goodacre; Kai Vernstad; Sven E. F. Borgos; Per Bruheim

Metabolic profiling of Pseudomonas fluorescens SBW25 and various mutants derived thereof was performed to explore how the bacterium adapt to changes in carbon source and upon induction of alginate synthesis. The experiments were performed at steady-state conditions in nitrogen-limited chemostats using either fructose or glycerol as carbon source. Carbon source consumption was up-regulated in the alginate producing mutant with inactivated anti-sigma factor MucA. The mucA- mutants (also non-alginate producing mucA- control strains) had a higher dry weight yield on carbon source implying a change in carbon and energy metabolism due to the inactivation of the anti-sigma factor MucA. Both LC–MS/MS and GC–MS methods were used for quantitative metabolic profiling, and major reorganization of primary metabolite pools in both an alginate producing and a carbon source dependent manner was observed. Generally, larger changes were observed among the phosphorylated glycolytic metabolites, the pentose phosphate pathway metabolites and the nucleotide pool than among amino acids and citric acid cycle compounds. The most significant observation at the metabolite level was the significantly reduced energy charge of the mucA- mutants (both alginate producing and non-producing control strains) compared to the wild type strain. This reduction was caused more by a strong increase in the AMP pool than changes in the ATP and ADP pools. The alginate-producing mucA- mutant had a slightly increased GTP pool, while the GDP and GMP pools were strongly increased compared to non-producing mucA- strains and to the wild type. Thus, whilst changes in the adenosine phosphate nucleotide pool are attributed to the mucA inactivation, adjustments in the guanosine phosphate nucleotide pool are consequences of the GTP-dependent alginate production induced by the mucA inactivation. This metabolic profiling study provides new insight into carbon and energy metabolism of the alginate producer P. fluorescens.


Archives of Microbiology | 2006

Effect of glucose limitation and specific mutations in the module 5 enoyl reductase domains in the nystatin and amphotericin polyketide synthases on polyene macrolide biosynthesis

Sven E. F. Borgos; Håvard Sletta; Espen Fjærvik; Trygve Brautaset; Trond E. Ellingsen; Ole-Martin Gulliksen; Sergey B. Zotchev

Enoyl reductase (ER) domains in module 5 of nystatin and amphotericin polyketide synthase (PKS) are responsible for reduction of the C28–C29 unsaturated bond on the nascent polyketide chain during biosynthesis of both macrolides, resulting in production of tetraenes nystatin A1 and amphotericin A, respectively. Data obtained in fermentations under glucose limitation conditions demonstrated that the efficiency of the ER5 domain can be influenced by carbon source availability in the amphotericin producer Streptomyces nodosus, but not in the nystatin producer Streptomyces noursei. Two S. noursei ER5 domain mutants were constructed, GG5073SP and S5016N, both producing the heptaene nystatin analogue S44HP with unsaturated C28–C29 bond. While the GG5073SP mutant, with altered ER5 NADPH binding site, produced S44HP exclusively, the S5016N mutant synthesized a mixture of nystatin and S44HP. Comparative studies on the S5016N S. noursei mutant and S. nodosus, both producing mixtures of tetraenes and heptaenes, revealed that the ratio between these two types of metabolites was significantly more affected by glucose limitation in S. nodosus. These data suggest that mutation S5016N in NysC “locks” the ER5 domain in a state of intermediate activity which, in contrast to the ER5 domain in the amphotericin PKS, is not significantly influenced by physiological conditions.


International Journal of Pharmaceutics | 2017

Analytical ultracentrifugation for analysis of doxorubicin loaded liposomes

Dora Mehn; Patrizia Iavicoli; Noelia Cabaleiro; Sven E. F. Borgos; Fanny Caputo; Otmar Geiss; Luigi Calzolai; François Rossi; Douglas Gilliland

Graphical abstract

Collaboration


Dive into the Sven E. F. Borgos's collaboration.

Top Co-Authors

Avatar

Sergey B. Zotchev

Norwegian University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Trygve Brautaset

Norwegian University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Olga N. Sekurova

Norwegian University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Per Bruheim

Norwegian University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Svein Valla

Norwegian University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Aina Nedal

Norwegian University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Espen Fjærvik

Norwegian University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Trond Erling Ellingsen

Norwegian University of Science and Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge