Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Terry E. Whall is active.

Publication


Featured researches published by Terry E. Whall.


Applied Physics Letters | 1991

Evidence for quantum confinement in the photoluminescence of porous Si and SiGe

S. Gardelis; J. S. Rimmer; P. Dawson; B. Hamilton; R. A. Kubiak; Terry E. Whall; E. H. C. Parker

We have used anodization techniques to process porous surface regions in p-type Czochralski Si and in p-type Si0.85Ge0.15 epitaxial layers grown by molecular beam epitaxy. The SiGe layers were unrelaxed before processing. We have observed strong near-infrared and visible light emission from both systems. Analysis of the radiative and nonradiative recombination processes indicate that the emission is consistent with the decay of excitons localized in structures of one or zero dimensions.


Applied Physics Letters | 2002

Extremely high room-temperature two-dimensional hole gas mobility in Ge/Si0.33Ge0.67/Si(001) p-type modulation-doped heterostructures

Maksym Myronov; Toshifumi Irisawa; O. A. Mironov; Shinji Koh; Y. Shiraki; Terry E. Whall; E. H. C. Parker

To extract the room-temperature drift mobility and sheet carrier density of two-dimensional hole gas (2DHG) that form in Ge strained channels of various thicknesses in Ge/Si0.33Ge0.67/Si(001) p-type modulation-doped heterostructures, the magnetic field dependences of the magnetoresistance and Hall resistance at temperature of 295 K were measured and the technique of maximum entropy mobility spectrum analysis was applied. This technique allows a unique determination of mobility and sheet carrier density of each group of carriers present in parallel conducting multilayers semiconductor heterostructures. Extremely high room-temperature drift mobility (at sheet carrier density) of 2DHG 2940 cm2 V–1 s–1 (5.11×1011 cm–2) was obtained in a sample with a 20 nm thick Ge strained channel.


Applied Physics Letters | 2001

Effective mobilities in pseudomorphic Si/SiGe/Si p-channel metal-oxide-semiconductor field-effect transistors with thin silicon capping layers

M.J. Palmer; G. Braithwaite; T. J. Grasby; P. J. Phillips; M. J. Prest; E. H. C. Parker; Terry E. Whall; C. P. Parry; A.M. Waite; A.G.R. Evans; S. Roy; J.R. Watling; Savas Kaya; Asen Asenov

The room-temperature effective mobilities of pseudomorphic Si/Si0.64Ge0.36/Si p-metal-oxidesemiconductor field effect transistors are reported. The peak mobility in the buried SiGe channel increases with silicon cap thickness. It is argued that SiO2/Si interface roughness is a major source of scattering in these devices, which is attenuated for thicker silicon caps. It is also suggested that segregated Ge in the silicon cap interferes with the oxidation process, leading to increased SiO2/Si interface roughness in the case of thin silicon caps.


Applied Physics Letters | 2010

Spin transport in germanium at room temperature

C. Shen; T. Trypiniotis; K. Y. Lee; S. N. Holmes; Rhodri Mansell; Muhammad Husain; V. A. Shah; X. Li; H. Kurebayashi; I. Farrer; C.H. de Groot; D. R. Leadley; Gavin R. Bell; E. H. C. Parker; Terry E. Whall; David A. Ritchie; C. H. W. Barnes

Spin-dependent transport is investigated in a Ni/Ge/AlGaAs junction with an electrodeposited Ni contact. Spin-polarised electrons are excited by optical spin orientation and are subsequently used to measure the spin dependent conductance at the Ni/Ge Schottky interface. We successfully demonstrate electron spin transport and electrical extraction from the Ge layer at room temperature.


Applied Physics Letters | 2012

Ultra-high hole mobility exceeding one million in a strained germanium quantum well

A. Dobbie; Maksym Myronov; R. J. H. Morris; A. H. A. Hassan; Martin Prest; V. A. Shah; E. H. C. Parker; Terry E. Whall; D. R. Leadley

In this paper, we report a Hall mobility of one million in a germanium two-dimensional hole gas. The extremely high hole mobility of 1.1 × 106 cm2 V−1 s−1 at a carrier sheet density of 3 × 1011 cm−2 was observed at 12 K. This mobility is nearly an order of magnitude higher than any previously reported. From the structural analysis of the material and mobility modeling based on the relaxation time approximation, we attribute this result to the combination of a high purity Ge channel and a very low background impurity level that is achieved from the reduced-pressure chemical vapor deposition growth method.


IEEE Transactions on Electron Devices | 2011

Investigation of Strain Engineering in FinFETs Comprising Experimental Analysis and Numerical Simulations

F. Conzatti; N. Serra; David Esseni; M. De Michielis; Alan Paussa; Pierpaolo Palestri; L. Selmi; Stephen M. Thomas; Terry E. Whall; D. R. Leadley; E. H. C. Parker; Liesbeth Witters; Martin Hÿtch; E. Snoeck; Ta-Wei Wang; Wen-Chin Lee; G. Doornbos; G. Vellianitis; M.J.H. van Dal; R. J. P. Lander

This study combines direct measurements of strain, electrical mobility measurements, and a rigorous modeling approach to provide insights about strain-induced mobility enhancement in FinFETs and guidelines for device optimization. Good agreement between simulated and measured mobility is obtained using strain components measured directly at device level by a novel holographic technique. A large vertical compressive strain is observed in metal gate FinFETs, and the simulations show that this helps recover the electron mobility disadvantage of the (110) FinFET lateral interfaces with respect to (100) interfaces, with no degradation of the hole mobility. The model is then used to systematically explore the impact of stress components in the fin width, height, and length directions on the mobility of both n- and p-type FinFETs and to identify optimal stress configurations. Finally, self-consistent Monte Carlo simulations are used to investigate how the most favorable stress configurations can improve the on current of nanoscale MOSFETs.


Journal of Applied Physics | 1993

Scattering mechanisms affecting hole transport in remote‐doped Si/SiGe heterostructures

C. J. Emeleus; Terry E. Whall; D. W. Smith; R. A. Kubiak; E. H. C. Parker; M J Kearney

Boron modulation‐doped Si/SiGe heterojunctions have been grown by molecular beam epitaxy. The two‐dimensional hole gas formed along the heterojunction, just inside the alloy, has a sheet density in the range 2–5×1011 cm−2 and a typical mobility at 5 K of 2000 cm2 V−1 s−1. An explanation for the magnitude of the mobility is sought by considering likely scattering mechanisms, namely those due to remote impurities, interface roughness, alloy disorder, and interface impurities. A self‐consistent model is used to determine the sheet density in terms of structural and energy parameters and dopant concentrations in the heterostructure. It is shown that the presence of negatively charged impurities at the heterojunction provides the basis for a consistent interpretation of the experimental results.


Applied Physics Letters | 1993

Optical properties of Si/Si0.87Ge0.13 multiple quantum well wires

Y.S. Tang; C. D. W. Wilkinson; C. M. Sotomayor Torres; D. W. Smith; Terry E. Whall; E. H. C. Parker

Nanometer‐scale wires cut into a Si/Si0.87Ge0.13 multiple quantum well structure were fabricated and characterized by using photoluminescence and photoreflectance at temperatures between 4 and 20 K. It was found that, in addition to a low‐energy broadband emission at around 0.8 eV and other features normally observable in photoluminescence measurements, fabrication process induced strain relaxation and enhanced electron‐hole droplets emission together with a new feature at 1.131 eV at 4 K were observed. The latter was further identified as a transition related to impurities located at the Si/Si0.87Ge0.13 heterointerfaces.


Journal of Applied Physics | 2001

Growth temperature dependence for the formation of vacancy clusters in Si/Si0.64Ge0.36/Si structures

A. P. Knights; R. Gwilliam; B.J. Sealy; T. J. Grasby; C. P. Parry; D. J. F. Fulgoni; P. J. Phillips; Terry E. Whall; E. H. C. Parker; P. G. Coleman

The incorporation of vacancy clusters and vacancy point defects during the growth of Si/Si0.64Ge0.36/Si structures has been observed for growth temperatures between 250 °C and 550 °C using positron annihilation spectroscopy. A strong correlation between the electrical characteristics of the structures and the size and concentration of the clusters is observed. For the onset of two-dimensional hole gas behavior, a defect concentration less than 5×1016 cm−3 is required. A further reduction in concentration below 1×1016 cm−3 results in optimum electrical performance. The depth at which defects are observed increases with decreasing growth temperature indicating defect mobility during growth or subsequent annealing.


Applied Physics Letters | 1990

p‐type delta‐doped layers in silicon: Structural and electronic properties

Nevil L. Mattey; M. G. Dowsett; E. H. C. Parker; Terry E. Whall; Stephen Taylor; J. F. Zhang

We report on the properties of p-type delta-doped layers prepared in molecular beam epitaxy-Si by growth interruption and evaporation of elemental B. Secondary-ion mass spectrometry measurements at several primary ion energies have been used to show that the full width at half maximum is ~2 nm. Hall measurements confirm that the layers are completely activated at 300 K with a mobility of 30±5 cm2/V s for a carrier density of (9±2)×1012 cm−2. At temperatures below 70 K nonmetallic behavior is observed which we have attributed to conduction between impurity states. It is concluded that the critical acceptor separation for the Mott metal-insulator transition in this system is significantly less than the value found in uniformly doped Si:B.

Collaboration


Dive into the Terry E. Whall's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mika Prunnila

VTT Technical Research Centre of Finland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

O. A. Mironov

National Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge