Thomas L. LaPorte
Bristol-Myers Squibb
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Thomas L. LaPorte.
Enzyme and Microbial Technology | 2000
Ronald L. Hanson; Jeffrey M. Howell; Thomas L. LaPorte; Mary Jo Donovan; Dana L Cazzulino; Valerie Zannella; Michael A. Montana; Venkata B. Nanduri; Steven R. Schwarz; Ronald F Eiring; Susan C Durand; John Wasylyk; William L. Parker; Mark Liu; Francis J. Okuniewicz; Bang-Chi Chen; John C. Harris; Kenneth J. Natalie; Keith Ramig; Shankar Swaminathan; Victor W. Rosso; Shawn K. Pack; Bruce T Lotz; Peter J. Bernot; Andrew Rusowicz; David A. Lust; Kai S Tse; John J. Venit; Laszlo J. Szarka; Ramesh N. Patel
Allysine ethylene acetal [(S)-2-amino-5-(1,3-dioxolan-2-yl)-pentanoic acid (2)] was prepared from the corresponding keto acid by reductive amination using phenylalanine dehydrogenase (PDH) from Thermoactinomyces intermedius ATCC 33205. Glutamate, alanine, and leucine dehydrogenases, and PDH from Sporosarcina species (listed in order of increasing effectiveness) also gave the desired amino acid but were less effective. The reaction requires ammonia and NADH. NAD produced during the reaction was recyled to NADH by the oxidation of formate to CO(2) using formate dehydrogenase (FDH). PDH was produced by growth of T. intermedius ATCC 33205 or by growth of recombinant Escherichia coli or Pichia pastoris expressing the Thermoactinomyces enzyme. Using heat-dried T. intermedius as a source of PDH and heat-dried Candida boidinii SC13822 as a source of FDH,98%, but production of T. intermedius could not be scaled up. Using heat-dried recombinant E. coli as a source of PDH and heat-dried Candida boidinii 98%. In a third generation process, heat-dried methanol-grown P. pastoris expressing endogenous FDH and recombinant Thermoactinomyces98% ee.
Bioorganic & Medicinal Chemistry Letters | 2003
Dane M. Springer; Margaret E. Sorenson; Stella Huang; Timothy P. Connolly; Joanne J. Bronson; James A. Matson; Ronald L. Hanson; David B. Brzozowski; Thomas L. LaPorte; Ramesh N. Patel
A C-8 keto pleuromutilin derivative has been synthesized from the biotransformation product 8-hydroxy mutilin. A key step in the process was the selective oxidation at C-8 of 8-hydroxy mutilin using tetrapropylammonium perruthenate. The presence of the C-8 keto group precipitated interesting intramolecular chemistry to afford a compound (10) with a novel pleuromutilin-derived ring system.
Enzyme and Microbial Technology | 2000
Ramesh N. Patel; Amit Banerjee; Venkata B. Nanduri; Steven L. Goldberg; Robert M. Johnston; Ronald L. Hanson; Clyde G. McNamee; David B. Brzozowski; Raphael Y. Ko; Thomas L. LaPorte; Dana L Cazzulino; Shankar Swaminathan; Chien-Kuang Chen; Larry W Parker; John J. Venit
[4S-(4I,7I,10aJ)]1-Octahydro-5-oxo-4-[phenylmethoxy)carbonyl]amino]-7H-pyrido-[2,1-b] [1,3]thiazepine-7-carboxylic acid methyl ester (BMS-199541-01) is a key chiral intermediate for the synthesis of Omapatrilat (BMS-186716), a new vasopeptidease inhibitor under development. By using a selective enrichment culture technique we have isolated a strain of Sphingomonas paucimobilis SC 16113, which contains a novel L-lysine ϵ-aminotransferase. This enzyme catalyzed the oxidation of the ϵ-amino group of lysine in the dipeptide dimer N2-[N[phenyl-methoxy)-carbonyl] L-homocysteinyl] L-lysine)1,1-disulphide (BMS-201391-01) to produce BMS-199541-01. The aminotransferase reaction required α-ketoglutarate as the amino acceptor. Glutamate formed during this reaction was recycled back to α-ketoglutarate by glutamate oxidase from Streptomyces noursei SC 6007. Fermentation processes were developed for growth of S. paucimobilis SC 16113 and S. noursei SC 6007 for the production of L-lysine ϵ-amino transferase and glutamate oxidase, respectively. L-lysine ϵ-aminotransferase was purified to homogeneity and N-terminal and internal peptides sequences of the purified protein were determined. The mol wt of L-lysine ϵ-aminotransferase is 81 000 Da and subunit size is 40 000 Da. L-lysine ϵ-aminotransferase gene (lat gene) from S. paucimobilis SC 16113 was cloned and overexpressed in Escherichia coli. Glutamate oxidase was purified to homogeneity from S. noursei SC 6003. The mol wt of glutamate oxidase is 125 000 Da and subunit size is 60 000 Da. The glutamate oxiadase gene from S. noursei SC 6003 was cloned and expressed in Streptomyces lividans. The biotransformation process was developed for the conversion of BMS-201391-01 to BMS-199541-01 by using L-lysine ϵ-aminotransferase expressed in E. coli. In the biotransformation process, for conversion of BMS-201391-01 (CBZ protecting group) to BMS-199541-01, a reaction yield of 65–70 M% was obtained depending upon reaction conditions used in the process. Phenylacetyl or phenoxyacetyl protected analogues of BMS-201391-01 also served as substrates for L-lysine ϵ-aminotransferase giving reaction yields of 70 M% for the corresponding BMS-199541-01 analogs. Two other dipeptides N-[N[(phenylmethoxy)carbonyl]-L-methionyl]-L-lysine (BMS-203528) and N,2-[S-acetyl-N-[(phenylmethoxy)carbonyl]-L-homocysteinyl]-L-lysine (BMS-204556) were also substrates for L-lysine ϵ-aminotransferase. N-α-protected (CBZ or BOC)-L-lysine were also oxidized by L-lysine ϵ-aminotransferase.
Enzyme and Microbial Technology | 2001
Venkata B. Nanduri; Ronald L. Hanson; Animesh Goswami; John Wasylyk; Thomas L. LaPorte; Kishta Katipally; Hyei-Jha Chung; Ramesh N. Patel
Three different biochemical approaches were used for the synthesis of ethyl 5-(S)-hydroxyhexanoate 1 and 5-(S)-hydroxyhexanenitrile 2. In the first approach, ethyl 5-oxo-hexanoate 3 and 5-oxo-hexanenitrile 4 were reduced by Pichia methanolica (SC 16116) to the corresponding (S)-alcohols, ethyl (S)-5-hydroxyhexanoate 1 and 5-(S)-hydroxyhexanenitrile 2, with an 80-90% yield and >95% enantiomeric excess (e.e). In the second approach, racemic 5-hydroxyhexanenitrile 5 was resolved by enzymatic succinylation, leading to the formation of (R)-5-hydroxyhexanenitrile hemisuccinate and leaving the desired alcohol 5-(S)-hydroxyhexanenitrile 2 with a yield of 34% (50% maximum yield) and >99% e.e. In the third approach, enzymatic hydrolysis of racemic 5-acetoxy hexanenitrile 6 resulted in the hydrolysis of the R-isomer to provide 5-(R)-hydroxyhexanenitrile, leaving 5-(S)-acetoxyhexanenitrile 7 with a 42% yield (50% maximum yield) and >99% e.e.
Journal of Organic Chemistry | 2014
Antonio J. Ramirez; Vu Chi Truc; Michael Lawler; Yun K. Ye; Jianji Wang; Chenchi Wang; Steven Chen; Thomas L. LaPorte; Nian Liu; Sergei V. Kolotuchin; Scott Jones; Shailendra Bordawekar; Srinivas Tummala; Robert E. Waltermire; David R. Kronenthal
The synthesis of a key intermediate in the preparation of oral antidiabetic drug Saxagliptin is discussed with an emphasis on the challenges posed by the cyclopropanation of a dihydropyrrole. Kinetic studies on the cyclopropanation show an induction period that is consistent with a change in the structure of the carbenoid reagent during the course of the reaction. This mechanistic transition is associated with an underlying Schlenk equilibrium that favors the formation of monoalkylzinc carbenoid IZnCH2I relative to dialkylzinc carbenoid Zn(CH2I)2, which is responsible for the initiation of the cyclopropanation. The factors influencing reaction rates and diastereoselectivities are discussed with the aid of DFT computational studies. The rate accelerations observed in the presence of Brønsted acid-type additives correlate with the minimization of the undesired induction period and offer insights for the development of a robust process.
Organic Process Research & Development | 2013
Peter Poechlauer; Juan Colberg; Elizabeth Fisher; Michael Jansen; Martin D. Johnson; Stefan G. Koenig; Michael Lawler; Thomas L. LaPorte; Julie Manley; Benjamin Martin; Anne O’Kearney-McMullan
Organic Process Research & Development | 2008
Thomas L. LaPorte; Mourad Hamedi; Jeffrey S. DePue; Lifen Shen; Daniel J. Watson; Daniel Hsieh
Organic Process Research & Development | 2002
Ronald L. Hanson; James A. Matson; David B. Brzozowski; Thomas L. LaPorte; Dane M. Springer; Ramesh N. Patel
Biotechnology and Bioengineering | 1995
Venkata B. Nanduri; Ronald L. Hanson; Thomas L. LaPorte; Raphael Y. Ko; Ramesh N. Patel; Laszlo J. Szarka
Organic Process Research & Development | 2014
Jaan A. Pesti; Thomas L. LaPorte; John E. Thornton; Lori Spangler; Frederic G. Buono; Gerard Crispino; Frank Gibson; Paul C. Lobben; Christos G. Papaioannou