Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Troy J. Beukema is active.

Publication


Featured researches published by Troy J. Beukema.


international solid-state circuits conference | 2006

A silicon 60GHz receiver and transmitter chipset for broadband communications

Brian A. Floyd; Scott K. Reynolds; U. Pfeifer; Troy J. Beukema; Janusz Grzyb; Chuck Haymes

An integrated SiGe superheterodyne RX/TX pair capable of Gb/s data rates in the 60GHz band is described. The 6dB NF RX includes an image-reject LNA, a multistage down-converter with on-chip IF filters, a frequency tripler, a PLL, and baseband outputs. The 10 to 12dBm P1dBTX achieves 10% PAE in the final stage. It includes a PA, image-reject driver, multistage up-converter with on-chip filters, tripler, and PLL


international solid state circuits conference | 2005

SiGe bipolar transceiver circuits operating at 60 GHz

Brian A. Floyd; Scott K. Reynolds; Ullrich R. Pfeiffer; Thomas Zwick; Troy J. Beukema; Brian P. Gaucher

A low-noise amplifier, direct-conversion quadrature mixer, power amplifier, and voltage-controlled oscillators have been implemented in a 0.12-/spl mu/m, 200-GHz f/sub T/290-GHz f/sub MAX/ SiGe bipolar technology for operation at 60 GHz. At 61.5 GHz, the two-stage LNA achieves 4.5-dB NF, 15-dB gain, consuming 6 mA from 1.8 V. This is the first known demonstration of a silicon LNA at V-band. The downconverter consists of a preamplifier, I/Q double-balanced mixers, a frequency tripler, and a quadrature generator, and is again the first known demonstration of silicon active mixers at V-band. At 60 GHz, the downconverter gain is 18.6 dB and the NF is 13.3 dB, and the circuit consumes 55 mA from 2.7 V, while the output buffers consume an additional 52 mA. The balanced class-AB PA provides 10.8-dB gain, +11.2-dBm 1-dB compression point, 4.3% maximum PAE, and 16-dBm saturated output power. Finally, fully differential Colpitts VCOs have been implemented at 22 and 67 GHz. The 67-GHz VCO has a phase noise better than -98 dBc/Hz at 1-MHz offset, and provides a 3.1% tuning range for 8-mA current consumption from a 3-V supply.


IEEE Journal of Solid-state Circuits | 2006

A Silicon 60-GHz Receiver and Transmitter Chipset for Broadband Communications

Scott K. Reynolds; Brian A. Floyd; Ullrich R. Pfeiffer; Troy J. Beukema; Janusz Grzyb; Chuck Haymes; Brian P. Gaucher; Mehmet Soyuer

A 0.13-mum SiGe BiCMOS double-conversion superheterodyne receiver and transmitter chipset for data communications in the 60-GHz band is presented. The receiver chip includes an image-reject low-noise amplifier (LNA), RF-to-IF mixer, IF amplifier strip, quadrature IF-to-baseband mixers, phase-locked loop (PLL), and frequency tripler. It achieves a 6-dB noise figure, -30 dBm IIP3, and consumes 500 mW. The transmitter chip includes a power amplifier, image-reject driver, IF-to-RF upmixer, IF amplifier strip, quadrature baseband-to-IF mixers, PLL, and frequency tripler. It achieves output P1dB of 10 to 12dBm, Psat of 15 to 17 dBm, and consumes 800 mW. The chips have been packaged with planar antennas, and a wireless data link at 630 Mb/s over 10 m has been demonstrated


IEEE Journal of Solid-state Circuits | 2006

A 10-Gb/s 5-Tap DFE/4-Tap FFE Transceiver in 90-nm CMOS Technology

John F. Bulzacchelli; Mounir Meghelli; Sergey V. Rylov; Woogeun Rhee; Alexander V. Rylyakov; Herschel A. Ainspan; Benjamin D. Parker; Michael P. Beakes; Aichin Chung; Troy J. Beukema; Petar Pepeljugoski; Lei Shan; Young H. Kwark; Sudhir Gowda; Daniel J. Friedman

This paper presents a 90-nm CMOS 10-Gb/s transceiver for chip-to-chip communications. To mitigate the effects of channel loss and other impairments, a 5-tap decision feedback equalizer (DFE) is included in the receiver and a 4-tap baud-spaced feed-forward equalizer (FFE) in the transmitter. This combination of DFE and FFE permits error-free NRZ signaling over channels with losses exceeding 30 dB. Low jitter clocks for the transmitter and receiver are supplied by a PLL with LC VCO. Operation at 10-Gb/s with good power efficiency is achieved by using half-rate architectures in both transmitter and receiver. With the transmitter producing an output signal of 1200mVppd, one transmitter/receiver pair and one PLL consume 300mW. Design enhancements of a half-rate DFE employing one tap of speculative feedback and four taps of dynamic feedback allow its loop timing requirements to be met. Serial link experiments with a variety of test channels demonstrate the effectiveness of the FFE/DFE equalization


international solid-state circuits conference | 2005

A 6.4-Gb/s CMOS SerDes core with feed-forward and decision-feedback equalization

Troy J. Beukema; Michael A. Sorna; K. Selander; Steven J. Zier; B.L. Ji; P. Murfet; J. Mason; W. Rhee; Herschel A. Ainspan; Benjamin D. Parker; M. Beakes

A 4.9-6.4-Gb/s two-level SerDes ASIC I/O core employing a four-tap feed-forward equalizer (FFE) in the transmitter and a five-tap decision-feedback equalizer (DFE) in the receiver has been designed in 0.13-/spl mu/m CMOS. The transmitter features a total jitter (TJ) of 35 ps p-p at 10/sup -12/ bit error rate (BER) and can output up to 1200 mVppd into a 100-/spl Omega/ differential load. Low jitter is achieved through the use of an LC-tank-based VCO/PLL system that achieves a typical random jitter of 0.6 ps over a phase noise integration range from 6 MHz to 3.2 GHz. The receiver features a variable-gain amplifier (VGA) with gain ranging from -6to +10dB in /spl sim/1dB steps, an analog peaking amplifier, and a continuously adapted DFE-based data slicer that uses a hybrid speculative/dynamic feedback architecture optimized for high-speed operation. The receiver system is designed to operate with a signal level ranging from 50 to 1200 mVppd. Error-free operation of the system has been demonstrated on lossy transmission line channels with over 32-dB loss at the Nyquist (1/2 Bd rate) frequency. The Tx/Rx pair with amortized PLL power consumes 290 mW of power from a 1.2-V supply while driving 600 mVppd and uses a die area of 0.79 mm/sup 2/.


IEEE Transactions on Microwave Theory and Techniques | 2006

A chip-scale packaging technology for 60-GHz wireless chipsets

Ullrich R. Pfeiffer; Janusz Grzyb; Duixian Liu; Brian P. Gaucher; Troy J. Beukema; Brian A. Floyd; Scott K. Reynolds

In this paper, we present a cost-effective chip-scale packaging solution for a 60-GHz industrial-scientific-medical band receiver (Rx) and transmitter (Tx) chipset capable of gigabit-per-second wireless communications. Envisioned applications of the packaged chipset include 1-3-Gb/s directional links using amplitude shift-keying or phase shift-keying modulation and 500-Mb/s-1-Gb/s omni-directional links using orthogonal frequency-division multiplexing modulation. This paper demonstrates the first fully package-integrated 60-GHz chipset including receive and transmit antennas in a cost-effective plastic package. A direct-chip-attach (DCA) and surface mountable land-grid-array (LGA) package technology is presented. The size of the DCA package is 7times11 mm2 and the LGA package size is 6times13 mm2. Optionally, the Tx and Rx chip can be packaged together with Tx and Rx antennas in a combined 13times13 mm2 LGA transceiver package


vehicular technology conference | 2005

Wideband channel sounder with measurements and model for the 60 GHz indoor radio channel

Thomas Zwick; Troy J. Beukema; Haewoon Nam

A wideband channel sounder and measurement results for the short range indoor 60 GHz channel are presented. The channel sounder is based on a 1 gigasamples/s dual channel arbitrary waveform generator and A/D converter/software demodulator, which synthesize and detect a baseband PN sequence with 500 MHz bandwidth. A heterodyne transmitter and receiver translate the baseband PN sequence to and from the 60 GHz band. Ten channel measurements taken across the 59 GHz to 64 GHz range are concatenated to provide a continuous channel measurement covering 5 GHz of bandwidth, resulting in 0.2 ns time domain channel impulse response resolution. The dynamic range and maximum sensitivity performance of the channel sounder are discussed in detail. Comparisons of results with a vector network analyzer based system are shown to verify the accuracy of the sounder. In an extensive measurement campaign with vertically polarized omnidirectional antennas, several different rooms (offices, labs, conference rooms and others) in four different buildings have been investigated. Over 700 channel measurements are the basis for a comprehensive characterization of the short range 60 GHz indoor radio channel with omnidirectional antennas. Finally, a simple stochastic static multipath channel model is derived from the measurement results.


international solid-state circuits conference | 2012

A 28-Gb/s 4-Tap FFE/15-Tap DFE Serial Link Transceiver in 32-nm SOI CMOS Technology

John F. Bulzacchelli; Christian Menolfi; Troy J. Beukema; Daniel W. Storaska; Jürgen Hertle; David R. Hanson; Ping-Hsuan Hsieh; Sergey V. Rylov; Daniel Furrer; Daniele Gardellini; Andrea Prati; Thomas Morf; Vivek Sharma; Ram Kelkar; Herschel A. Ainspan; William R. Kelly; Leonard R. Chieco; Glenn A. Ritter; John A. Sorice; Jon Garlett; Robert Callan; Matthias Brandli; Peter Buchmann; Marcel Kossel; Thomas Toifl; Daniel J. Friedman

As exemplified by standards such as OIF CEI-25G, 32G-FC, and next-generation 100GbE, serial link data rates are being pushed up to 25 to 28Gb/s in order to increase I/O system bandwidth. Such speeds represent a near doubling of the state-of-the-art for fully integrated transceivers [1-3]. With scaling no longer providing large gains in device speed, significant design advances must be made to attain these data rates. This paper describes a 28Gb/s serial link transceiver featuring a source-series terminated (SST) driver topology with twice the speed of existing designs, a two-stage peaking amplifier with capacitively-coupled parallel input stages and active feedback, and a 15-tap DFE. The use of capacitive level-shifters allows a single current-integrating summer to drive the parallel paths used for speculating the first two DFE taps.


IEEE Transactions on Advanced Packaging | 2009

Is 25 Gb/s On-Board Signaling Viable?

Dong Gun Kam; Mark B. Ritter; Troy J. Beukema; John F. Bulzacchelli; Petar Pepeljugoski; Young H. Kwark; Lei Shan; Xiaoxiong Gu; Christian W. Baks; Richard A. John; Gareth G. Hougham; Christian Schuster; Renato Rimolo-Donadio; Boping Wu

What package improvements are required for dense, high-aggregate bandwidth buses running at data rates beyond 10 Gb/s per channel, and when might optical interconnects on the board be required? We present a study of distance and speed limits for electrical on-board module-to-module links with an eye to answering these questions. Hardware-validated models of advanced organic modules and printed circuit boards were used to explore these limits. Simulations of link performance performed with an internal link modeling tool allowed us to explore the effect of equalization and modulation formats at different data rates on link bit error rate and eye opening. Our link models have been validated with active, high-speed differential bus measurements utilizing a 16-channel link chip with programmable equalization and a per-channel data rate of up to 11 Gb/s. Electrical signaling limits were then determined by extrapolating these hardware-correlated models to higher speeds, and these limits were compared to the results of recent work on on-board optical interconnects.


Ibm Journal of Research and Development | 2003

Developing integrated antenna subsystems for laptop computers

Duixian Liu; Brian P. Gaucher; Ephraim Bemis Flint; Thomas Wayne Studwell; Hideyuki Usui; Troy J. Beukema

The design, development, testing, and integration methodology for antennas integrated into laptop computers is described. Two key parameters are proposed and discussed for laptop antenna design and evaluation: standing wave ratio (SWR) and average antenna gain. A novel averaging technique was developed and applied to these to yield a measurable, repeatable, and generalized metric. A prototype antenna was built using this methodology, and measurements indicate that the resulting design attains both performance and cost targets. A PC-card-version wireless system is also discussed and compared with the integrated one. The impact of the antenna on the overall wireless system is studied through a link budget model.

Collaboration


Dive into the Troy J. Beukema's collaboration.

Researchain Logo
Decentralizing Knowledge