Vandy Blue Spikes
University of Maine
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Vandy Blue Spikes.
Journal of Geophysical Research | 2009
Roger C. Bales; Qinghua Guo; Dayong Shen; Joseph R. McConnell; Guoming Du; J. F. Burkhart; Vandy Blue Spikes; Edward Hanna; John Cappelen
An updated accumulation map for Greenland is presented on the basis of 39 new ice core estimates of accumulation, 256 ice sheet estimates from ice cores and snow pits used in previous maps, and reanalysis of time series data from 20 coastal weather stations. The period 1950-2000 is better represented by the data than are earlier periods. Ice-sheetwide accumulation was estimated based on kriging. The average accumulation (95 confidence interval, or ±2 times standard error) over the Greenland ice sheet is 30.0 ± 2.4 g cm -2 a-1, with the average accumulation above 2000-m elevation being essentially the same, 29.9 ± 2.2 g cm-2 a -1. At higher elevations the new accumulation map maintains the main features shown in previous maps. However, there are five coastal areas with obvious differences: southwest, northwest, and eastern regions, where the accumulation values are 20-50 lower than previously estimated, and southeast and northeast regions, where the accumulation values are 20-50 higher than previously estimated. These differences are almost entirely due to new coastal data. The much lower accumulation in the southwest and the much higher accumulation in the southeast indicated by the current map mean that long-term mass balance in both catchments is closer to steady state than previously estimated. However, uncertainty in these areas remains high owing to strong gradients in precipitation from the coast inland. A significant and sustained precipitation measurement program will be needed to resolve this uncertainty. Copyright 2009 by the American Geophysical Union.
Annals of Glaciology | 2004
Susan Kaspari; Paul Andrew Mayewski; Daniel A. Dixon; Vandy Blue Spikes; Sharon B. Sneed; Michael Handley; Gordon S. Hamilton
Abstract Thirteen annually resolved accumulation-rate records covering the last ~200 years from the Pine Island–Thwaites and Ross drainage systems and the South Pole are used to examine climate variability over West Antarctica. Accumulation is controlled spatially by the topography of the ice sheet, and temporally by changes in moisture transport and cyclonic activity. A comparison of mean accumulation since 1970 at each site to the long-term mean indicates an increase in accumulation for sites located in the western sector of the Pine Island–Thwaites drainage system. Accumulation is negatively associated with the Southern Oscillation Index (SOI) for sites near the ice divide, and periods of sustained negative SOI (1940–42, 1991–95) correspond to above-mean accumulation at most sites. Correlations of the accumulation-rate records with sea-level pressure (SLP) and the SOI suggest that accumulation near the ice divide and in the Ross drainage system may be associated with the mid-latitudes. The post-1970 increase in accumulation coupled with strong SLP–accumulation-rate correlations near the coast suggests recent intensification of cyclonic activity in the Pine Island– Thwaites drainage system.
Annals of Glaciology | 2004
Vandy Blue Spikes; Gordon S. Hamilton; Steven A. Arcone; Susan Kaspari; Paul Andrew Mayewski
Abstract Isochronal layers in firn detected with ground-penetrating radar (GPR) and dated using results from ice-core analyses are used to calculate accumulation rates along a 100 km across-flow profile in West Antarctica. Accumulation rates are shown to be highly variable over short distances. Elevation measurements from global positioning system surveys show that accumulation rates derived from shallow horizons correlate well with surface undulations, which implies that wind redistribution of snow is the leading cause of this variability. Temporal changes in accumulation rate over 25–185 year intervals are smoothed to along-track length scales comparable to surface undulations in order to identify trends in accumulation that are likely related to changes in climate. Results show that accumulation rates along this profile have decreased in recent decades, which is consistent with core-derived time series of annual accumulation rates measured at the two ends of the radar profile. These results suggest that temporal variability observed in accumulation-rate records from ice cores and GPR profiles can be obscured by spatial influences, although it is possible to resolve temporal signals if the effects of local topography and ice flow are quantified and removed.
Annals of Glaciology | 2005
Eric J. Steig; Paul Andrew Mayewski; Daniel A. Dixon; Susan Kaspari; Markus Michael Frey; David P. Schneider; Stephen A. Arcone; Gordon S. Hamilton; Vandy Blue Spikes; M. R. Albert; Deb Meese; Anthony J. Gow; Christopher A. Shuman; James W. C. White; Sharon Sneed; Joseph Flaherty; Mark Wumkes
Abstract Shallow ice cores were obtained from widely distributed sites across the West Antarctic ice sheet, as part of the United States portion of the International Trans-Antarctic Scientific Expedition (US ITASE) program. The US ITASE cores have been dated by annual-layer counting, primarily through the identification of summer peaks in non-sea-salt sulfate (nssSO4 2–) concentration. Absolute dating accuracy of better than 2 years and relative dating accuracy better than 1 year is demonstrated by the identification of multiple volcanic marker horizons in each of the cores, Tambora, Indonesia (1815), being the most prominent. Independent validation is provided by the tracing of isochronal layers from site to site using high-frequency ice-penetrating radar observations, and by the timing of mid-winter warming events in stable-isotope ratios, which demonstrate significantly better than 1 year accuracy in the last 20 years. Dating precision to ±1 month is demonstrated by the occurrence of summer nitrate peaks and stable-isotope ratios in phase with nssSO4 2–, and winter-time sea-salt peaks out of phase, with phase variation of <1 month. Dating precision and accuracy are uniform with depth, for at least the last 100 years.
Annals of Glaciology | 2004
Steven A. Arcone; Vandy Blue Spikes; Gordon S. Hamilton; Paul Andrew Mayewski
Abstract We track dated firn horizons within 400 MHz short-pulse radar profiles to find the continuous extent over which they can be used as historical benchmarks to study past accumulation rates in West Antarctica. The 30–40cm pulse resolution compares with the accumulation rates of most areas. We tracked a particular set that varied from 30 to 90 m in depth over a distance of 600 km. The main limitations to continuity are fading at depth, pinching associated with accumulation rate differences within hills and valleys, and artificial fading caused by stacking along dips. The latter two may be overcome through multi-kilometer distances by matching the relative amplitude and spacing of several close horizons, along with their pulse forms and phases. Modeling of reflections from thin layers suggests that the – 37 to – 50 dB range of reflectivity and the pulse waveforms we observed are caused by the numerous thin ice layers observed in core stratigraphy. Constructive interference between reflections from these close, high-density layers can explain the maintenance of reflective strength throughout the depth of the firn despite the effects of compaction. The continuity suggests that these layers formed throughout West Antarctica and possibly into East Antarctica as well.
Annals of Glaciology | 2013
Clément Miège; Richard R. Forster; Jason E. Box; Evan W. Burgess; Joseph R. McConnell; Daniel R. Pasteris; Vandy Blue Spikes
Abstract Despite containing only 14% of the Greenland ice sheet by area, the southeastern sector has the highest accumulation rates, and hence receives ∼30% of the total snow accumulation. We present accumulation rates obtained during our 2010 Arctic Circle Traverse derived from three 50 m firn cores dated using geochemical analysis. We tracked continuous internal reflection horizons between the firn cores using a 400 MHz ground-penetrating radar (GPR). GPR data combined with depth-age scales from the firn cores provide accumulation rates along a 70 km transect. We followed an elevation gradient from ∼2350 to ∼1830m to understand how progressive surface melt may affect the ability to chemically date the firn cores and trace the internal layers with GPR. From the firn cores, we find a 52% (∼0.43 m w.e. a-1) increase in average snow accumulation and greater interannual variability at the lower site than the upper site. The GPR profiling reveals that accumulation rates are influenced by topographic undulations on the surface, with up to 23% variability over 7 km. These measurements confirm the presence of high accumulation rates in the southeast as predicted by the calibrated regional climate model Polar MM5.
Journal of Glaciology | 2003
Vandy Blue Spikes; Beata Csatho; Gordon S. Hamilton; I. M. Whillans
Repeat airborne laser altimeter measurements are used to derive surface elevation changes on parts of Whillans Ice Stream and Ice Stream C, West Antarctica. Elevation changes are converted to estimates of ice equivalent thickness change using local accumulation rates, surface snow densities and vertical bedrock motions. The surveyed portions of two major tributaries of Whillans Ice Stream are found to be thinning almost uniformly at an average rate of ∼ 1 m a -1 . Ice Stream C has a complicated elevation-change pattern, but is generally thickening. These results are used to estimate the contribution of each surveyed region to the current rate of global sea-level rise.
Journal of Glaciology | 2003
Vandy Blue Spikes; Beata Csatho; I. M. Whillans
We assess the accuracy and precision of the U.S. National Science Foundations Support Office for Aerogeophysical Research (SOAR) laser profiling system for mapping topography and detecting surface elevation changes of West Antarctic ice streams. The procedures used to process, calibrate and validate the laser, navigation and global positioning system (GPS) data are presented. The primary objective is to produce surface elevations with the best possible resolution. Repeat surveys of a grid of lines over Whillans Ice Stream and Ice Streams C and E were conducted in the 1997/98 and 1999/ 2000 seasons. The procedure has been calibrated using special test flights conducted over areas that have been surveyed with precise geodetic GPS equipment mounted on snowmobiles. After calibration, agreement between the two surfaces is ±10 cm rms. The accuracy and precision of the procedure have been evaluated at points where laser flight-lines cross over one another. The accuracy of the system is found to range from 0.09 to 0.22 m.
Geophysical Research Letters | 2005
Laurence Gray; Ian Joughin; Slawek Tulaczyk; Vandy Blue Spikes; Robert Bindschadler; Ken Jezek
Geophysical Research Letters | 2003
Aslak Grinsted; John C. Moore; Vandy Blue Spikes; Anna Sinisalo