Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yumiko Matsuoka is active.

Publication


Featured researches published by Yumiko Matsuoka.


Journal of Virology | 2005

Molecular Basis of Replication of Duck H5N1 Influenza Viruses in a Mammalian Mouse Model

Zejun Li; Hualan Chen; Peirong Jiao; Guohua Deng; Guobin Tian; Yanbing Li; Erich Hoffmann; Robert G. Webster; Yumiko Matsuoka; Kangzhen Yu

ABSTRACT We recently analyzed a series of H5N1 viruses isolated from healthy ducks in southern China since 1999 and found that these viruses had progressively acquired the ability to replicate and cause disease in mice. In the present study, we explored the genetic basis of this change in host range by comparing two of the viruses that are genetically similar but differ in their ability to infect mice and have different pathogenicity in mice. A/duck/Guangxi/22/2001 (DKGX/22) is nonpathogenic in mice, whereas A/duck/Guangxi/35/2001 (DKGX/35) is highly pathogenic. We used reverse genetics to create a series of single-gene recombinants that contained one gene from DKGX/22 and the remaining seven gene segments from DKGX/35. We find that the PA, NA, and NS genes of DKGX/22 could attenuate DKGX/35 virus to some extent, but PB2 of DKGX/22 virus attenuated the DKGX/35 virus dramatically, and an Asn-to-Asp substitution at position 701 of PB2 plays a key role in this function. Conversely, of the recombinant viruses in the DKGX/22 background, only the one that contains the PB2 gene of DKGX/35 was able to replicate in mice. A single amino acid substitution (Asp to Asn) at position 701 of PB2 enabled DKGX/22 to infect and become lethal for mice. These results demonstrate that amino acid Asn 701 of PB2 is one of the important determinants for this avian influenza virus to cross the host species barrier and infect mice, though the replication and lethality of H5N1 influenza viruses involve multiple genes and may result from a constellation of genes. Our findings may help to explain the expansion of the host range and lethality of the H5N1 influenza viruses to humans.


Proceedings of the National Academy of Sciences of the United States of America | 2006

Lack of transmission of H5N1 avian-human reassortant influenza viruses in a ferret model.

Taronna R. Maines; Li-Mei Chen; Yumiko Matsuoka; Hualan Chen; Thomas Rowe; Juan Ortín; Ana Falcón; Nguyen Tran Hien; Le Quynh Mai; Endang R. Sedyaningsih; Syahrial Harun; Terrence M. Tumpey; Ruben O. Donis; Nancy J. Cox; Kanta Subbarao; Jacqueline M. Katz

Avian influenza A H5N1 viruses continue to spread globally among birds, resulting in occasional transmission of virus from infected poultry to humans. Probable human-to-human transmission has been documented rarely, but H5N1 viruses have not yet acquired the ability to transmit efficiently among humans, an essential property of a pandemic virus. The pandemics of 1957 and 1968 were caused by avian–human reassortant influenza viruses that had acquired human virus-like receptor binding properties. However, the relative contribution of human internal protein genes or other molecular changes to the efficient transmission of influenza viruses among humans remains poorly understood. Here, we report on a comparative ferret model that parallels the efficient transmission of H3N2 human viruses and the poor transmission of H5N1 avian viruses in humans. In this model, an H3N2 reassortant virus with avian virus internal protein genes exhibited efficient replication but inefficient transmission, whereas H5N1 reassortant viruses with four or six human virus internal protein genes exhibited reduced replication and no transmission. These findings indicate that the human virus H3N2 surface protein genes alone did not confer efficient transmissibility and that acquisition of human virus internal protein genes alone was insufficient for this 1997 H5N1 virus to develop pandemic capabilities, even after serial passages in a mammalian host. These results highlight the complexity of the genetic basis of influenza virus transmissibility and suggest that H5N1 viruses may require further adaptation to acquire this essential pandemic trait.


Journal of Virology | 2005

Isolation and Characterization of Avian Influenza Viruses, Including Highly Pathogenic H5N1, from Poultry in Live Bird Markets in Hanoi, Vietnam, in 2001

Doan C. Nguyen; Timothy M. Uyeki; Samadhan Jadhao; Taronna R. Maines; Michael Shaw; Yumiko Matsuoka; Catherine Smith; Thomas Rowe; Xiuhua Lu; Henrietta Hall; Xiyan Xu; Amanda Balish; Alexander Klimov; Terrence M. Tumpey; David E. Swayne; Lien P. T. Huynh; Ha K. Nghiem; Hanh Nguyen; Long T. Hoang; Nancy J. Cox; Jacqueline M. Katz

ABSTRACT Since 1997, outbreaks of highly pathogenic (HP) H5N1 and circulation of H9N2 viruses among domestic poultry in Asia have posed a threat to public health. To better understand the extent of transmission of avian influenza viruses (AIV) to humans in Asia, we conducted a cross-sectional virologic study in live bird markets (LBM) in Hanoi, Vietnam, in October 2001. Specimens from 189 birds and 18 environmental samples were collected at 10 LBM. Four influenza A viruses of the H4N6 (n = 1), H5N2 (n = 1), and H9N3 (n = 2) subtypes were isolated from healthy ducks for an isolation frequency of over 30% from this species. Two H5N1 viruses were isolated from healthy geese. The hemagglutinin (HA) genes of these H5N1 viruses possessed multiple basic amino acid motifs at the cleavage site, were HP for experimentally infected chickens, and were thus characterized as HP AIV. These HA genes shared high amino acid identities with genes of other H5N1 viruses isolated in Asia during this period, but they were genetically distinct from those of H5N1 viruses isolated from poultry and humans in Vietnam during the early 2004 outbreaks. These viruses were not highly virulent for experimentally infected ducks, mice, or ferrets. These results establish that HP H5N1 viruses with properties similar to viruses isolated in Hong Kong and mainland China circulated in Vietnam as early as 2001, suggest a common source for H5N1 viruses circulating in these Asian countries, and provide a framework to better understand the recent widespread emergence of HP H5N1 viruses in Asia.


Journal of Virology | 2009

Neuraminidase Stalk Length and Additional Glycosylation of the Hemagglutinin Influence the Virulence of Influenza H5N1 Viruses for Mice

Yumiko Matsuoka; David E. Swayne; Colleen Thomas; Marie-Anne Rameix-Welti; Nadia Naffakh; Christine Warnes; Melanie Altholtz; Ruben O. Donis; Kanta Subbarao

ABSTRACT Following circulation of avian influenza H5 and H7 viruses in poultry, the hemagglutinin (HA) can acquire additional glycosylation sites, and the neuraminidase (NA) stalk becomes shorter. We investigated whether these features play a role in the pathogenesis of infection in mammalian hosts. From 1996 to 2007, H5N1 viruses with a short NA stalk have become widespread in several avian species. Compared to viruses with a long-stalk NA, viruses with a short-stalk NA showed a decreased capacity to elute from red blood cells and an increased virulence in mice, but not in chickens. The presence of additional HA glycosylation sites had less of an effect on virulence than did NA stalk length. The short-stalk NA of H5N1 viruses circulating in Asia may contribute to virulence in humans.


PLOS ONE | 2008

Evolution of highly pathogenic H5N1 avian influenza viruses in Vietnam between 2001 and 2007

Xiu-Feng Wan; Tung Nguyen; C. Todd Davis; Catherine B. Smith; Zi Ming Zhao; Margaret Carrel; Kenjiro Inui; Hoa T. Do; Duong T. Mai; Samadhan Jadhao; Amanda Balish; Bo Shu; Feng Luo; Michael Emch; Yumiko Matsuoka; Stephen Lindstrom; Nancy J. Cox; Cam V. Nguyen; Alexander Klimov; Ruben O. Donis

Highly pathogenic avian influenza (HPAI) H5N1 viruses have caused dramatic economic losses to the poultry industry of Vietnam and continue to pose a serious threat to public health. As of June 2008, Vietnam had reported nearly one third of worldwide laboratory confirmed human H5N1 infections. To better understand the emergence, spread and evolution of H5N1 in Vietnam we studied over 300 H5N1 avian influenza viruses isolated from Vietnam since their first detection in 2001. Our phylogenetic analyses indicated that six genetically distinct H5N1 viruses were introduced into Vietnam during the past seven years. The H5N1 lineage that evolved following the introduction in 2003 of the A/duck/Hong Kong/821/2002-like viruses, with clade 1 hemagglutinin (HA), continued to predominate in southern Vietnam as of May 2007. A virus with a clade 2.3.4 HA newly introduced into northern Vietnam in 2007, reassorted with pre-existing clade 1 viruses, resulting in the emergence of novel genotypes with neuraminidase (NA) and/or internal gene segments from clade 1 viruses. A total of nine distinct genotypes have been present in Vietnam since 2001, including five that were circulating in 2007. At least four of these genotypes appear to have originated in Vietnam and represent novel H5N1 viruses not reported elsewhere. Geographic and temporal analyses of H5N1 infection dynamics in poultry suggest that the majority of viruses containing new genes were first detected in northern Vietnam and subsequently spread to southern Vietnam after reassorting with pre-existing local viruses in northern Vietnam. Although the routes of entry and spread of H5N1 in Vietnam remain speculative, enhanced poultry import controls and virologic surveillance efforts may help curb the entry and spread of new HPAI viral genes.


Journal of Virology | 2009

Early Control of H5N1 Influenza Virus Replication by the Type I Interferon Response in Mice

Kristy J. Szretter; Shivaprakash Gangappa; Jessica A. Belser; Hui Zeng; Hualan Chen; Yumiko Matsuoka; Suryaprakash Sambhara; David E. Swayne; Terrence M. Tumpey; Jacqueline M. Katz

ABSTRACT Widespread distribution of highly pathogenic avian H5N1 influenza viruses in domesticated and wild birds continues to pose a threat to public health, as interspecies transmission of virus has resulted in increasing numbers of human disease cases. Although the pathogenic mechanism(s) of H5N1 influenza viruses has not been fully elucidated, it has been suggested that the ability to evade host innate responses, such as the type I interferon response, may contribute to the virulence of these viruses in mammals. We investigated the role that type I interferons (alpha/beta interferon [IFN-α/β]) might play in H5N1 pathogenicity in vivo, by comparing the kinetics and outcomes of H5N1 virus infection in IFN-α/β receptor (IFN-α/βR)-deficient and SvEv129 wild-type mice using two avian influenza A viruses isolated from humans, A/Hong Kong/483/97 (HK/483) and A/Hong Kong/486/97 (HK/486), which exhibit high and low lethality in mice, respectively. IFN-α/βR-deficient mice experienced significantly more weight loss and more rapid time to death than did wild-type mice. HK/486 virus caused a systemic infection similar to that with HK/483 virus in IFN-α/βR-deficient mice, suggesting a role for IFN-α/β in controlling the systemic spread of this H5N1 virus. HK/483 virus replicated more efficiently than HK/486 virus both in vivo and in vitro. However, replication of both viruses was significantly reduced following pretreatment with IFN-α/β. These results suggest a role for the IFN-α/β response in the control of H5N1 virus replication both in vivo and in vitro, and as such it may provide some degree of protection to the host in the early stages of infection.


Vaccine | 2003

Generation and characterization of a cold-adapted influenza A H9N2 reassortant as a live pandemic influenza virus vaccine candidate

Hualan Chen; Yumiko Matsuoka; David E. Swayne; Q Chen; Nancy J. Cox; Brian R. Murphy; Kanta Subbarao

H9N2 subtype influenza A viruses have been identified in avian species worldwide and were isolated from humans in 1999, raising concerns about their pandemic potential and prompting the development of candidate vaccines to protect humans against this subtype of influenza A virus. Reassortant H1N1 and H3N2 human influenza A viruses with the internal genes of the influenza A/Ann Arbor/6/60 (H2N2) (AA) cold-adapted (ca) virus have proven to be attenuated and safe as live virus vaccines in humans. Using classical genetic reassortment, we generated a reassortant virus (G9/AA ca) that contains the hemagglutinin and neuraminidase genes from influenza A/chicken/Hong Kong/G9/97 (H9N2) (G9) and six internal gene segments from the AA ca virus. When administered intranasally, the reassortant virus was immunogenic and protected mice from subsequent challenge with wild-type H9N2 viruses, although it was restricted in replication in the respiratory tract of mice. The G9/AA ca virus bears properties that are desirable in a vaccine for humans and is available for clinical evaluation and use, should the need arise.


PLOS ONE | 2009

Development of epitope-blocking ELISA for universal detection of antibodies to human H5N1 influenza viruses.

Mookkan Prabakaran; Hui-Ting Ho; Nayana Prabhu; Sumathy Velumani; Milene Szyporta; Fang He; Kwai-Peng Chan; Li-Mei Chen; Yumiko Matsuoka; Ruben O. Donis; Jimmy Kwang

Background Human infections with highly pathogenic H5N1 avian influenza viruses have generally been confirmed by molecular amplification or culture-based methods. Serologic surveillance has potential advantages which have not been realized because rapid and specific serologic tests to detect H5N1 infection are not widely available. Methodology/Principal Findings Here we describe an epitope-blocking ELISA to detect specific antibodies to H5N1 viruses in human or animal sera. The assay relies on a novel monoclonal antibody (5F8) that binds to an epitope comprising amino acid residues 274–281 (CNTKCQTP) in the HA1 region of H5 hemagglutinin. Database search analysis of publicly available sequences revealed that this epitope is conserved in 100% of the 163 H5N1 viruses isolated from humans. The sensitivity and specificity of the epitope-blocking ELISA for H5N1 were evaluated using chicken antisera to multiple virus clades and other influenza subtypes as well as serum samples from individuals naturally infected with H5N1 or seasonal influenza viruses. The epitope-blocking ELISA results were compared to those of hemagglutinin inhibition (HI) and microneutralization assays. Antibodies to H5N1 were readily detected in immunized animals or convalescent human sera by the epitope-blocking ELISA whereas specimens with antibodies to other influenza subtypes yielded negative results. The assay showed higher sensitivity and specificity as compared to HI and microneutralization. Conclusions/Significance The epitope-blocking ELISA based on a unique 5F8 mAb provided highly sensitive and 100% specific detection of antibodies to H5N1 influenza viruses in human sera.


Vaccine | 2003

Generation and evaluation of a high-growth reassortant H9N2 influenza A virus as a pandemic vaccine candidate

Hualan Chen; Kanta Subbarao; David E. Swayne; Qi Chen; Xiuhua Lu; Jacqueline M. Katz; Nancy J. Cox; Yumiko Matsuoka

H9N2 subtype avian influenza viruses (AIVs) are widely distributed in avian species and were isolated from humans in Hong Kong and Guangdong province, China in 1999 raising concern of their potential for pandemic spread. We generated a high-growth reassortant virus (G9/PR8) that contains the hemagglutinin (HA) and neuraminidase (NA) genes from the H9N2 avian influenza virus A/chicken/Hong Kong/G9/97 (G9) and six internal genes from A/Puerto Rico/8/34 (PR8) by genetic reassortment, for evaluation as a potential vaccine candidate in humans. Pathogenicity studies showed that the G9/PR8 reassortant was not highly pathogenic for mice or chickens. Two doses of a formalin-inactivated G9/PR8 virus vaccine induced hemagglutination inhibiting antibodies and conferred complete protection against challenge with G9 and the antigenically distinct H9N2 A/Hong Kong/1073/99 (G1-like) virus in a mouse model. These results indicate that the high growth G9/PR8 reassortant has properties that are desirable in a vaccine seed virus and is suitable for evaluation in humans for use in the event of an H9 pandemic.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Structure and accessibility of HA trimers on intact 2009 H1N1 pandemic influenza virus to stem region-specific neutralizing antibodies

Audray K. Harris; Joel R. Meyerson; Yumiko Matsuoka; Oleg Kuybeda; Amy Moran; Donald Bliss; Suman R. Das; Jonathan W. Yewdell; Guillermo Sapiro; Kanta Subbarao; Sriram Subramaniam

Rapid antigenic variation of HA, the major virion surface protein of influenza A virus, remains the principal challenge to the development of broader and more effective vaccines. Some regions of HA, such as the stem region proximal to the viral membrane, are nevertheless highly conserved across strains and among most subtypes. A fundamental question in vaccine design is the extent to which HA stem regions on the surface of the virus are accessible to broadly neutralizing antibodies. Here we report 3D structures derived from cryoelectron tomography of HA on intact 2009 H1N1 pandemic virions in the presence and absence of the antibody C179, which neutralizes viruses expressing a broad range of HA subtypes, including H1, H2, H5, H6, and H9. By fitting previously derived crystallographic structures of trimeric HA into the density maps, we deduced the locations of the molecular surfaces of HA involved in interaction with C179. Using computational methods to distinguish individual unliganded HA trimers from those that have bound C179 antibody, we demonstrate that ∼75% of HA trimers on the surface of the virus have C179 bound to the stem domain. Thus, despite their close packing on the viral membrane, the majority of HA trimers on intact virions are available to bind anti-stem antibodies that target conserved HA epitopes, establishing the feasibility of universal influenza vaccines that elicit such antibodies.

Collaboration


Dive into the Yumiko Matsuoka's collaboration.

Top Co-Authors

Avatar

Nancy J. Cox

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

David E. Swayne

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

Kanta Subbarao

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Ruben O. Donis

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

Jacqueline M. Katz

National Center for Immunization and Respiratory Diseases

View shared research outputs
Top Co-Authors

Avatar

Alexander Klimov

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

Li-Mei Chen

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

Samadhan Jadhao

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

Ranjit Ray

Saint Louis University

View shared research outputs
Top Co-Authors

Avatar

Hualan Chen

Harbin Veterinary Research Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge