Featured Researches

Artificial Intelligence

Dealing with Incompatibilities among Procedural Goals under Uncertainty

By considering rational agents, we focus on the problem of selecting goals out of a set of incompatible ones. We consider three forms of incompatibility introduced by Castelfranchi and Paglieri, namely the terminal, the instrumental (or based on resources), and the superfluity. We represent the agent's plans by means of structured arguments whose premises are pervaded with uncertainty. We measure the strength of these arguments in order to determine the set of compatible goals. We propose two novel ways for calculating the strength of these arguments, depending on the kind of incompatibility that exists between them. The first one is the logical strength value, it is denoted by a three-dimensional vector, which is calculated from a probabilistic interval associated with each argument. The vector represents the precision of the interval, the location of it, and the combination of precision and location. This type of representation and treatment of the strength of a structured argument has not been defined before by the state of the art. The second way for calculating the strength of the argument is based on the cost of the plans (regarding the necessary resources) and the preference of the goals associated with the plans. Considering our novel approach for measuring the strength of structured arguments, we propose a semantics for the selection of plans and goals that is based on Dung's abstract argumentation theory. Finally, we make a theoretical evaluation of our proposal.

Read more
Artificial Intelligence

Deep Learning for General Game Playing with Ludii and Polygames

Combinations of Monte-Carlo tree search and Deep Neural Networks, trained through self-play, have produced state-of-the-art results for automated game-playing in many board games. The training and search algorithms are not game-specific, but every individual game that these approaches are applied to still requires domain knowledge for the implementation of the game's rules, and constructing the neural network's architecture -- in particular the shapes of its input and output tensors. Ludii is a general game system that already contains over 500 different games, which can rapidly grow thanks to its powerful and user-friendly game description language. Polygames is a framework with training and search algorithms, which has already produced superhuman players for several board games. This paper describes the implementation of a bridge between Ludii and Polygames, which enables Polygames to train and evaluate models for games that are implemented and run through Ludii. We do not require any game-specific domain knowledge anymore, and instead leverage our domain knowledge of the Ludii system and its abstract state and move representations to write functions that can automatically determine the appropriate shapes for input and output tensors for any game implemented in Ludii. We describe experimental results for short training runs in a wide variety of different board games, and discuss several open problems and avenues for future research.

Read more
Artificial Intelligence

Deep Reinforcement Learning with a Stage Incentive Mechanism of Dense Reward for Robotic Trajectory Planning

(This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessible.) To improve the efficiency of deep reinforcement learning (DRL)-based methods for robot manipulator trajectory planning in random working environments, we present three dense reward functions. These rewards differ from the traditional sparse reward. First, a posture reward function is proposed to speed up the learning process with a more reasonable trajectory by modeling the distance and direction constraints, which can reduce the blindness of exploration. Second, a stride reward function is proposed to improve the stability of the learning process by modeling the distance and movement distance of joint constraints. Finally, in order to further improve learning efficiency, we are inspired by the cognitive process of human behavior and propose a stage incentive mechanism, including a hard stage incentive reward function and a soft stage incentive reward function. Extensive experiments show that the soft stage incentive reward function is able to improve the convergence rate by up to 46.9% with the state-of-the-art DRL methods. The percentage increase in the convergence mean reward was 4.4-15.5% and the percentage decreases with respect to standard deviation were 21.9-63.2%. In the evaluation experiments, the success rate of trajectory planning for a robot manipulator reached 99.6%.

Read more
Artificial Intelligence

Deep Reinforcement Learning-Based Product Recommender for Online Advertising

In online advertising, recommender systems try to propose items from a list of products to potential customers according to their interests. Such systems have been increasingly deployed in E-commerce due to the rapid growth of information technology and availability of large datasets. The ever-increasing progress in the field of artificial intelligence has provided powerful tools for dealing with such real-life problems. Deep reinforcement learning (RL) that deploys deep neural networks as universal function approximators can be viewed as a valid approach for design and implementation of recommender systems. This paper provides a comparative study between value-based and policy-based deep RL algorithms for designing recommender systems for online advertising. The RecoGym environment is adopted for training these RL-based recommender systems, where the long short term memory (LSTM) is deployed to build value and policy networks in these two approaches, respectively. LSTM is used to take account of the key role that order plays in the sequence of item observations by users. The designed recommender systems aim at maximising the click-through rate (CTR) for the recommended items. Finally, guidelines are provided for choosing proper RL algorithms for different scenarios that the recommender system is expected to handle.

Read more
Artificial Intelligence

Defeasible reasoning in Description Logics: an overview on DL^N

DL^N is a recent approach that extends description logics with defeasible reasoning capabilities. In this paper we provide an overview on DL^N, illustrating the underlying knowledge engineering requirements as well as the characteristic features that preserve DL^N from some recurrent semantic and computational drawbacks. We also compare DL^N with some alternative nonmonotonic semantics, enlightening the relationships between the KLM postulates and DL^N.

Read more
Artificial Intelligence

Derived metrics for the game of Go -- intrinsic network strength assessment and cheat-detection

The widespread availability of superhuman AI engines is changing how we play the ancient game of Go. The open-source software packages developed after the AlphaGo series shifted focus from producing strong playing entities to providing tools for analyzing games. Here we describe two ways of how the innovations of the second generation engines (e.g.~score estimates, variable komi) can be used for defining new metrics that help deepen our understanding of the game. First, we study how much information the search component contributes in addition to the raw neural network policy output. This gives an intrinsic strength measurement for the neural network. Second, we define the effect of a move by the difference in score estimates. This gives a fine-grained, move-by-move performance evaluation of a player. We use this in combating the new challenge of detecting online cheating.

Read more
Artificial Intelligence

Design a Technology Based on the Fusion of Genetic Algorithm, Neural network and Fuzzy logic

This paper describes the design and development of a prototype technique for artificial intelligence based on the fusion of genetic algorithm, neural network and fuzzy logic. It starts by establishing a relationship between the neural network and fuzzy logic. Then, it combines the genetic algorithm with them. Information fusions are at the confidence level, where matching scores can be reported and discussed. The technique is called the Genetic Neuro-Fuzzy (GNF). It can be used for high accuracy real-time environments.

Read more
Artificial Intelligence

Design and Implementation of TAG: A Tabletop Games Framework

This document describes the design and implementation of the Tabletop Games framework (TAG), a Java-based benchmark for developing modern board games for AI research. TAG provides a common skeleton for implementing tabletop games based on a common API for AI agents, a set of components and classes to easily add new games and an import module for defining data in JSON format. At present, this platform includes the implementation of seven different tabletop games that can also be used as an example for further developments. Additionally, TAG also incorporates logging functionality that allows the user to perform a detailed analysis of the game, in terms of action space, branching factor, hidden information, and other measures of interest for Game AI research. The objective of this document is to serve as a central point where the framework can be described at length. TAG can be downloaded at: this https URL

Read more
Artificial Intelligence

Detecting Cross-Modal Inconsistency to Defend Against Neural Fake News

Large-scale dissemination of disinformation online intended to mislead or deceive the general population is a major societal problem. Rapid progression in image, video, and natural language generative models has only exacerbated this situation and intensified our need for an effective defense mechanism. While existing approaches have been proposed to defend against neural fake news, they are generally constrained to the very limited setting where articles only have text and metadata such as the title and authors. In this paper, we introduce the more realistic and challenging task of defending against machine-generated news that also includes images and captions. To identify the possible weaknesses that adversaries can exploit, we create a NeuralNews dataset composed of 4 different types of generated articles as well as conduct a series of human user study experiments based on this dataset. In addition to the valuable insights gleaned from our user study experiments, we provide a relatively effective approach based on detecting visual-semantic inconsistencies, which will serve as an effective first line of defense and a useful reference for future work in defending against machine-generated disinformation.

Read more
Artificial Intelligence

Detection of Racial Bias from Physiological Responses

Despite the evolution of norms and regulations to mitigate the harm from biases, harmful discrimination linked to an individual's unconscious biases persists. Our goal is to better understand and detect the physiological and behavioral indicators of implicit biases. This paper investigates whether we can reliably detect racial bias from physiological responses, including heart rate, conductive skin response, skin temperature, and micro-body movements. We analyzed data from 46 subjects whose physiological data was collected with Empatica E4 wristband while taking an Implicit Association Test (IAT). Our machine learning and statistical analysis show that implicit bias can be predicted from physiological signals with 76.1% accuracy. Our results also show that the EDA signal associated with skin response has the strongest correlation with racial bias and that there are significant differences between the values of EDA features for biased and unbiased participants.

Read more

Ready to get started?

Join us today