Featured Researches

Artificial Intelligence

Exploring the Limits of Few-Shot Link Prediction in Knowledge Graphs

Real-world knowledge graphs are often characterized by low-frequency relations - a challenge that has prompted an increasing interest in few-shot link prediction methods. These methods perform link prediction for a set of new relations, unseen during training, given only a few example facts of each relation at test time. In this work, we perform a systematic study on a spectrum of models derived by generalizing the current state of the art for few-shot link prediction, with the goal of probing the limits of learning in this few-shot setting. We find that a simple zero-shot baseline - which ignores any relation-specific information - achieves surprisingly strong performance. Moreover, experiments on carefully crafted synthetic datasets show that having only a few examples of a relation fundamentally limits models from using fine-grained structural information and only allows for exploiting the coarse-grained positional information of entities. Together, our findings challenge the implicit assumptions and inductive biases of prior work and highlight new directions for research in this area.

Read more
Artificial Intelligence

Extending Answer Set Programs with Neural Networks

The integration of low-level perception with high-level reasoning is one of the oldest problems in Artificial Intelligence. Recently, several proposals were made to implement the reasoning process in complex neural network architectures. While these works aim at extending neural networks with the capability of reasoning, a natural question that we consider is: can we extend answer set programs with neural networks to allow complex and high-level reasoning on neural network outputs? As a preliminary result, we propose NeurASP -- a simple extension of answer set programs by embracing neural networks where neural network outputs are treated as probability distributions over atomic facts in answer set programs. We show that NeurASP can not only improve the perception accuracy of a pre-trained neural network, but also help to train a neural network better by giving restrictions through logic rules. However, training with NeurASP would take much more time than pure neural network training due to the internal use of a symbolic reasoning engine. For future work, we plan to investigate the potential ways to solve the scalability issue of NeurASP. One potential way is to embed logic programs directly in neural networks. On this route, we plan to first design a SAT solver using neural networks, then extend such a solver to allow logic programs.

Read more
Artificial Intelligence

Extracting Concepts for Precision Oncology from the Biomedical Literature

This paper describes an initial dataset and automatic natural language processing (NLP) method for extracting concepts related to precision oncology from biomedical research articles. We extract five concept types: Cancer, Mutation, Population, Treatment, Outcome. A corpus of 250 biomedical abstracts were annotated with these concepts following standard double-annotation procedures. We then experiment with BERT-based models for concept extraction. The best-performing model achieved a precision of 63.8%, a recall of 71.9%, and an F1 of 67.1. Finally, we propose additional directions for research for improving extraction performance and utilizing the NLP system in downstream precision oncology applications.

Read more
Artificial Intelligence

Facilitating Connected Autonomous Vehicle Operations Using Space-weighted Information Fusion and Deep Reinforcement Learning Based Control

The connectivity aspect of connected autonomous vehicles (CAV) is beneficial because it facilitates dissemination of traffic-related information to vehicles through Vehicle-to-External (V2X) communication. Onboard sensing equipment including LiDAR and camera can reasonably characterize the traffic environment in the immediate locality of the CAV. However, their performance is limited by their sensor range (SR). On the other hand, longer-range information is helpful for characterizing imminent conditions downstream. By contemporaneously coalescing the short- and long-range information, the CAV can construct comprehensively its surrounding environment and thereby facilitate informed, safe, and effective movement planning in the short-term (local decisions including lane change) and long-term (route choice). In this paper, we describe a Deep Reinforcement Learning based approach that integrates the data collected through sensing and connectivity capabilities from other vehicles located in the proximity of the CAV and from those located further downstream, and we use the fused data to guide lane changing, a specific context of CAV operations. In addition, recognizing the importance of the connectivity range (CR) to the performance of not only the algorithm but also of the vehicle in the actual driving environment, the paper carried out a case study. The case study demonstrates the application of the proposed algorithm and duly identifies the appropriate CR for each level of prevailing traffic density. It is expected that implementation of the algorithm in CAVs can enhance the safety and mobility associated with CAV driving operations. From a general perspective, its implementation can provide guidance to connectivity equipment manufacturers and CAV operators, regarding the default CR settings for CAVs or the recommended CR setting in a given traffic environment.

Read more
Artificial Intelligence

Fair Set Selection: Meritocracy and Social Welfare

In this paper, we formulate the problem of selecting a set of individuals from a candidate population as a utility maximisation problem. From the decision maker's perspective, it is equivalent to finding a selection policy that maximises expected utility. Our framework leads to the notion of expected marginal contribution (EMC) of an individual with respect to a selection policy as a measure of deviation from meritocracy. In order to solve the maximisation problem, we propose to use a policy gradient algorithm. For certain policy structures, the policy gradients are proportional to EMCs of individuals. Consequently, the policy gradient algorithm leads to a locally optimal solution that has zero EMC, and satisfies meritocracy. For uniform policies, EMC reduces to the Shapley value. EMC also generalises the fair selection properties of Shapley value for general selection policies. We experimentally analyse the effect of different policy structures in a simulated college admission setting and compare with ranking and greedy algorithms. Our results verify that separable linear policies achieve high utility while minimising EMCs. We also show that we can design utility functions that successfully promote notions of group fairness, such as diversity.

Read more
Artificial Intelligence

FairXGBoost: Fairness-aware Classification in XGBoost

Highly regulated domains such as finance have long favoured the use of machine learning algorithms that are scalable, transparent, robust and yield better performance. One of the most prominent examples of such an algorithm is XGBoost. Meanwhile, there is also a growing interest in building fair and unbiased models in these regulated domains and numerous bias-mitigation algorithms have been proposed to this end. However, most of these bias-mitigation methods are restricted to specific model families such as logistic regression or support vector machine models, thus leaving modelers with a difficult decision of choosing between fairness from the bias-mitigation algorithms and scalability, transparency, performance from algorithms such as XGBoost. We aim to leverage the best of both worlds by proposing a fair variant of XGBoost that enjoys all the advantages of XGBoost, while also matching the levels of fairness from the state-of-the-art bias-mitigation algorithms. Furthermore, the proposed solution requires very little in terms of changes to the original XGBoost library, thus making it easy for adoption. We provide an empirical analysis of our proposed method on standard benchmark datasets used in the fairness community.

Read more
Artificial Intelligence

Fairness in the Eyes of the Data: Certifying Machine-Learning Models

We present a framework that allows to certify the fairness degree of a model based on an interactive and privacy-preserving test. The framework verifies any trained model, regardless of its training process and architecture. Thus, it allows us to evaluate any deep learning model on multiple fairness definitions empirically. We tackle two scenarios, where either the test data is privately available only to the tester or is publicly known in advance, even to the model creator. We investigate the soundness of the proposed approach using theoretical analysis and present statistical guarantees for the interactive test. Finally, we provide a cryptographic technique to automate fairness testing and certified inference with only black-box access to the model at hand while hiding the participants' sensitive data.

Read more
Artificial Intelligence

Fairness through Optimization

We propose optimization as a general paradigm for formalizing fairness in AI-based decision models. We argue that optimization models allow formulation of a wide range of fairness criteria as social welfare functions, while enabling AI to take advantage of highly advanced solution technology. We show how optimization models can assist fairness-oriented decision making in the context of neural networks, support vector machines, and rule-based systems by maximizing a social welfare function subject to appropriate constraints. In particular, we state tractable optimization models for a variety of functions that measure fairness or a combination of fairness and efficiency. These include several inequality metrics, Rawlsian criteria, the McLoone and Hoover indices, alpha fairness, the Nash and Kalai-Smorodinsky bargaining solutions, combinations of Rawlsian and utilitarian criteria, and statistical bias measures. All of these models can be efficiently solved by linear programming, mixed integer/linear programming, or (in two cases) specialized convex programming methods.

Read more
Artificial Intelligence

Fast Approximate Solutions using Reinforcement Learning for Dynamic Capacitated Vehicle Routing with Time Windows

This paper develops an inherently parallelised, fast, approximate learning-based solution to the generic class of Capacitated Vehicle Routing Problems with Time Windows and Dynamic Routing (CVRP-TWDR). Considering vehicles in a fleet as decentralised agents, we postulate that using reinforcement learning (RL) based adaptation is a key enabler for real-time route formation in a dynamic environment. The methodology allows each agent (vehicle) to independently evaluate the value of serving each customer, and uses a centralised allocation heuristic to finalise the allocations based on the generated values. We show that the solutions produced by this method are significantly faster than exact formulations and state-of-the-art meta-heuristics, while being reasonably close to optimal in terms of solution quality. We describe experiments in both the static case (when all customer demands and time windows are known in advance) as well as the dynamic case (where customers can pop up at any time during execution). The results with a single trained model on large, out-of-distribution test data demonstrate the scalability and flexibility of the proposed approach.

Read more
Artificial Intelligence

Fast Decomposition of Temporal Logic Specifications for Heterogeneous Teams

In this work, we focus on decomposing large multi-agent path planning problems with global temporal logic goals (common to all agents) into smaller sub-problems that can be solved and executed independently. Crucially, the sub-problems' solutions must jointly satisfy the common global mission specification. The agents' missions are given as Capability Temporal Logic (CaTL) formulas, a fragment of signal temporal logic, that can express properties over tasks involving multiple agent capabilities (sensors, e.g., camera, IR, and effectors, e.g., wheeled, flying, manipulators) under strict timing constraints. The approach we take is to decompose both the temporal logic specification and the team of agents. We jointly reason about the assignment of agents to subteams and the decomposition of formulas using a satisfiability modulo theories (SMT) approach. The output of the SMT is then distributed to subteams and leads to a significant speed up in planning time. We include computational results to evaluate the efficiency of our solution, as well as the trade-offs introduced by the conservative nature of the SMT encoding.

Read more

Ready to get started?

Join us today