Featured Researches

Artificial Intelligence

Explainable AI for Robot Failures: Generating Explanations that Improve User Assistance in Fault Recovery

With the growing capabilities of intelligent systems, the integration of robots in our everyday life is increasing. However, when interacting in such complex human environments, the occasional failure of robotic systems is inevitable. The field of explainable AI has sought to make complex-decision making systems more interpretable but most existing techniques target domain experts. On the contrary, in many failure cases, robots will require recovery assistance from non-expert users. In this work, we introduce a new type of explanation, that explains the cause of an unexpected failure during an agent's plan execution to non-experts. In order for error explanations to be meaningful, we investigate what types of information within a set of hand-scripted explanations are most helpful to non-experts for failure and solution identification. Additionally, we investigate how such explanations can be autonomously generated, extending an existing encoder-decoder model, and generalized across environments. We investigate such questions in the context of a robot performing a pick-and-place manipulation task in the home environment. Our results show that explanations capturing the context of a failure and history of past actions, are the most effective for failure and solution identification among non-experts. Furthermore, through a second user evaluation, we verify that our model-generated explanations can generalize to an unseen office environment, and are just as effective as the hand-scripted explanations.

Read more
Artificial Intelligence

Explainable AI without Interpretable Model

Explainability has been a challenge in AI for as long as AI has existed. With the recently increased use of AI in society, it has become more important than ever that AI systems would be able to explain the reasoning behind their results also to end-users in situations such as being eliminated from a recruitment process or having a bank loan application refused by an AI system. Especially if the AI system has been trained using Machine Learning, it tends to contain too many parameters for them to be analysed and understood, which has caused them to be called `black-box' systems. Most Explainable AI (XAI) methods are based on extracting an interpretable model that can be used for producing explanations. However, the interpretable model does not necessarily map accurately to the original black-box model. Furthermore, the understandability of interpretable models for an end-user remains questionable. The notions of Contextual Importance and Utility (CIU) presented in this paper make it possible to produce human-like explanations of black-box outcomes directly, without creating an interpretable model. Therefore, CIU explanations map accurately to the black-box model itself. CIU is completely model-agnostic and can be used with any black-box system. In addition to feature importance, the utility concept that is well-known in Decision Theory provides a new dimension to explanations compared to most existing XAI methods. Finally, CIU can produce explanations at any level of abstraction and using different vocabularies and other means of interaction, which makes it possible to adjust explanations and interaction according to the context and to the target users.

Read more
Artificial Intelligence

Explainable Artificial Intelligence Approaches: A Survey

The lack of explainability of a decision from an Artificial Intelligence (AI) based "black box" system/model, despite its superiority in many real-world applications, is a key stumbling block for adopting AI in many high stakes applications of different domain or industry. While many popular Explainable Artificial Intelligence (XAI) methods or approaches are available to facilitate a human-friendly explanation of the decision, each has its own merits and demerits, with a plethora of open challenges. We demonstrate popular XAI methods with a mutual case study/task (i.e., credit default prediction), analyze for competitive advantages from multiple perspectives (e.g., local, global), provide meaningful insight on quantifying explainability, and recommend paths towards responsible or human-centered AI using XAI as a medium. Practitioners can use this work as a catalog to understand, compare, and correlate competitive advantages of popular XAI methods. In addition, this survey elicits future research directions towards responsible or human-centric AI systems, which is crucial to adopt AI in high stakes applications.

Read more
Artificial Intelligence

Explainable Automated Reasoning in Law using Probabilistic Epistemic Argumentation

Applying automated reasoning tools for decision support and analysis in law has the potential to make court decisions more transparent and objective. Since there is often uncertainty about the accuracy and relevance of evidence, non-classical reasoning approaches are required. Here, we investigate probabilistic epistemic argumentation as a tool for automated reasoning about legal cases. We introduce a general scheme to model legal cases as probabilistic epistemic argumentation problems, explain how evidence can be modeled and sketch how explanations for legal decisions can be generated automatically. Our framework is easily interpretable, can deal with cyclic structures and imprecise probabilities and guarantees polynomial-time probabilistic reasoning in the worst-case.

Read more
Artificial Intelligence

Explainable Natural Language Reasoning via Conceptual Unification

This paper presents an abductive framework for multi-hop and interpretable textual inference. The reasoning process is guided by the notions unification power and plausibility of an explanation, computed through the interaction of two major architectural components: (a) An analogical reasoning model that ranks explanatory facts by leveraging unification patterns in a corpus of explanations; (b) An abductive reasoning model that performs a search for the best explanation, which is realised via conceptual abstraction and subsequent unification. We demonstrate that the Step-wise Conceptual Unification can be effective for unsupervised question answering, and as an explanation extractor in combination with state-of-the-art Transformers. An empirical evaluation on the Worldtree corpus and the ARC Challenge resulted in the following conclusions: (1) The question answering model outperforms competitive neural and multi-hop baselines without requiring any explicit training on answer prediction; (2) When used as an explanation extractor, the proposed model significantly improves the performance of Transformers, leading to state-of-the-art results on the Worldtree corpus; (3) Analogical and abductive reasoning are highly complementary for achieving sound explanatory inference, a feature that demonstrates the impact of the unification patterns on performance and interpretability.

Read more
Artificial Intelligence

Explaining AI as an Exploratory Process: The Peircean Abduction Model

Current discussions of "Explainable AI" (XAI) do not much consider the role of abduction in explanatory reasoning (see Mueller, et al., 2018). It might be worthwhile to pursue this, to develop intelligent systems that allow for the observation and analysis of abductive reasoning and the assessment of abductive reasoning as a learnable skill. Abductive inference has been defined in many ways. For example, it has been defined as the achievement of insight. Most often abduction is taken as a single, punctuated act of syllogistic reasoning, like making a deductive or inductive inference from given premises. In contrast, the originator of the concept of abduction---the American scientist/philosopher Charles Sanders Peirce---regarded abduction as an exploratory activity. In this regard, Peirce's insights about reasoning align with conclusions from modern psychological research. Since abduction is often defined as "inferring the best explanation," the challenge of implementing abductive reasoning and the challenge of automating the explanation process are closely linked. We explore these linkages in this report. This analysis provides a theoretical framework for understanding what the XAI researchers are already doing, it explains why some XAI projects are succeeding (or might succeed), and it leads to design advice.

Read more
Artificial Intelligence

Exploiting Submodular Value Functions For Scaling Up Active Perception

In active perception tasks, an agent aims to select sensory actions that reduce its uncertainty about one or more hidden variables. While partially observable Markov decision processes (POMDPs) provide a natural model for such problems, reward functions that directly penalize uncertainty in the agent's belief can remove the piecewise-linear and convex property of the value function required by most POMDP planners. Furthermore, as the number of sensors available to the agent grows, the computational cost of POMDP planning grows exponentially with it, making POMDP planning infeasible with traditional methods. In this article, we address a twofold challenge of modeling and planning for active perception tasks. We show the mathematical equivalence of ρ POMDP and POMDP-IR, two frameworks for modeling active perception tasks, that restore the PWLC property of the value function. To efficiently plan for active perception tasks, we identify and exploit the independence properties of POMDP-IR to reduce the computational cost of solving POMDP-IR (and ρ POMDP). We propose greedy point-based value iteration (PBVI), a new POMDP planning method that uses greedy maximization to greatly improve scalability in the action space of an active perception POMDP. Furthermore, we show that, under certain conditions, including submodularity, the value function computed using greedy PBVI is guaranteed to have bounded error with respect to the optimal value function. We establish the conditions under which the value function of an active perception POMDP is guaranteed to be submodular. Finally, we present a detailed empirical analysis on a dataset collected from a multi-camera tracking system employed in a shopping mall. Our method achieves similar performance to existing methods but at a fraction of the computational cost leading to better scalability for solving active perception tasks.

Read more
Artificial Intelligence

Exploring Bayesian Surprise to Prevent Overfitting and to Predict Model Performance in Non-Intrusive Load Monitoring

Non-Intrusive Load Monitoring (NILM) is a field of research focused on segregating constituent electrical loads in a system based only on their aggregated signal. Significant computational resources and research time are spent training models, often using as much data as possible, perhaps driven by the preconception that more data equates to more accurate models and better performing algorithms. When has enough prior training been done? When has a NILM algorithm encountered new, unseen data? This work applies the notion of Bayesian surprise to answer these questions which are important for both supervised and unsupervised algorithms. We quantify the degree of surprise between the predictive distribution (termed postdictive surprise), as well as the transitional probabilities (termed transitional surprise), before and after a window of observations. We compare the performance of several benchmark NILM algorithms supported by NILMTK, in order to establish a useful threshold on the two combined measures of surprise. We validate the use of transitional surprise by exploring the performance of a popular Hidden Markov Model as a function of surprise threshold. Finally, we explore the use of a surprise threshold as a regularization technique to avoid overfitting in cross-dataset performance. Although the generality of the specific surprise threshold discussed herein may be suspect without further testing, this work provides clear evidence that a point of diminishing returns of model performance with respect to dataset size exists. This has implications for future model development, dataset acquisition, as well as aiding in model flexibility during deployment.

Read more
Artificial Intelligence

Exploring Instance Generation for Automated Planning

Many of the core disciplines of artificial intelligence have sets of standard benchmark problems well known and widely used by the community when developing new algorithms. Constraint programming and automated planning are examples of these areas, where the behaviour of a new algorithm is measured by how it performs on these instances. Typically the efficiency of each solving method varies not only between problems, but also between instances of the same problem. Therefore, having a diverse set of instances is crucial to be able to effectively evaluate a new solving method. Current methods for automatic generation of instances for Constraint Programming problems start with a declarative model and search for instances with some desired attributes, such as hardness or size. We first explore the difficulties of adapting this approach to generate instances starting from problem specifications written in PDDL, the de-facto standard language of the automated planning community. We then propose a new approach where the whole planning problem description is modelled using Essence, an abstract modelling language that allows expressing high-level structures without committing to a particular low level representation in PDDL.

Read more
Artificial Intelligence

Exploring Scale-Measures of Data Sets

Measurement is a fundamental building block of numerous scientific models and their creation. This is in particular true for data driven science. Due to the high complexity and size of modern data sets, the necessity for the development of understandable and efficient scaling methods is at hand. A profound theory for scaling data is scale-measures, as developed in the field of formal concept analysis. Recent developments indicate that the set of all scale-measures for a given data set constitutes a lattice and does hence allow efficient exploring algorithms. In this work we study the properties of said lattice and propose a novel scale-measure exploration algorithm that is based on the well-known and proven attribute exploration approach. Our results motivate multiple applications in scale recommendation, most prominently (semi-)automatic scaling.

Read more

Ready to get started?

Join us today