Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Alejandro G. Schrott.
Ibm Journal of Research and Development | 1998
Eugene J. O'Sullivan; Alejandro G. Schrott; Carlos Juan Sambucetti; Jeffrey R. Marino; Philip J. Bailey; Suryanarayana Kaja; Krystyna W. Semkow
Electrolessly deposited materials were investigated as possible diffusion barrier layers for multilayer microelectronic structures. Attention was focused on selective deposition of barrier layers on various surfaces, the barriers capability to inhibit Cu diffusion, changes in Cu resistivity caused by barrier material diffusion into Cu, and adhesion between a polyimide film and the barrier layer. Electroless Co(P) was the most effective barrier to Cu diffusion at elevated temperature, even at Co(P) thicknesses as low as 500 A. Diffusion-barrier effectiveness of electrolessly deposited materials decreased in the following order: Co(P) > Ni-Co(P) ≃ Ni(P) > pure metals Co, Ni). Although a polyimide film bonded strongly to electrolessly deposited Ni(P) layers and only weakly to as-deposited Co(P), electroless Ni(P) significantly increased the Cu resistivity through interdiffusion. Polyimide adhesion to Co(P) was improved by oxidizing a Co(P) surface immediately after deposition to grow a passive film 50-75 A thick, yielding a surface to which the polyimide adheres strongly and reproducibly. A low-energy-beam, scanning electron microscopy/energy-dispersive X-ray analysis technique (SEM/EDX) was developed to measure the nonoxidized thin Co(P) barrier layer thickness.
international electron devices meeting | 2006
Yi-Chou Chen; C. T. Rettner; Simone Raoux; Geoffrey W. Burr; S-T. Chen; R. M. Shelby; M. Salinga; W. P. Risk; Thomas Happ; G. M. McClelland; Matthew J. Breitwisch; Alejandro G. Schrott; J. B. Philipp; Ming-Hsiu Lee; Roger W. Cheek; T. Nirschl; M. Lamorey; Chieh Fang Chen; Eric A. Joseph; S. Zaidi; B. Yee; Hsiang-Lan Lung; R. Bergmann; Chung Hon Lam
An ultra-thin phase-change bridge (PCB) memory cell, implemented with doped GeSb, is shown with < 100muA RESET current. The device concept provides for simplified scaling to small cross-sectional area (60nm2) through ultra-thin (3nm) films; the doped GeSb phase-change material offers the potential for both fast crystallization and good data retention
symposium on vlsi technology | 2006
Thomas Happ; Matthew J. Breitwisch; Alejandro G. Schrott; Jan Boris Philipp; Ming-Hsiu Lee; Roger W. Cheek; T. Nirschl; M. Lamorey; C. Ho; Shih-Hung Chen; C.-F. Chen; Eric A. Joseph; S. Zaidi; Geoffrey W. Burr; B. Yee; Yi-Chou Chen; Simone Raoux; Hsiang-Lan Lung; R. Bergmann; Chung Hon Lam
A novel Pillar phase change memory based on fully integrated test arrays in 180nm CMOS technology has been successfully fabricated. A current-confining Pillar structure leads to a self-heating at the center of the chalcogenide layer, and needs only one additional mask level for its fabrication. Switching characteristics with write currents less than 900muA at 75nm diameter and multilevel operation are reported
ACM Journal on Emerging Technologies in Computing Systems | 2013
Bryan L. Jackson; Bipin Rajendran; Gregory S. Corrado; Matthew J. Breitwisch; Geoffrey W. Burr; Roger W. Cheek; Kailash Gopalakrishnan; Simone Raoux; C. T. Rettner; Alvaro Padilla; Alejandro G. Schrott; R. S. Shenoy; B. N. Kurdi; Chung Hon Lam; Dharmendra S. Modha
The memory capacity, computational power, communication bandwidth, energy consumption, and physical size of the brain all tend to scale with the number of synapses, which outnumber neurons by a factor of 10,000. Although progress in cortical simulations using modern digital computers has been rapid, the essential disparity between the classical von Neumann computer architecture and the computational fabric of the nervous system makes large-scale simulations expensive, power hungry, and time consuming. Over the last three decades, CMOS-based neuromorphic implementations of “electronic cortex” have emerged as an energy efficient alternative for modeling neuronal behavior. However, the key ingredient for electronic implementation of any self-learning system—programmable, plastic Hebbian synapses scalable to biological densities—has remained elusive. We demonstrate the viability of implementing such electronic synapses using nanoscale phase change devices. We introduce novel programming schemes for modulation of device conductance to closely mimic the phenomenon of Spike Timing Dependent Plasticity (STDP) observed biologically, and verify through simulations that such plastic phase change devices should support simple correlative learning in networks of spiking neurons. Our devices, when arranged in a crossbar array architecture, could enable the development of synaptronic systems that approach the density (∼1011 synapses per sq cm) and energy efficiency (consuming ∼1pJ per synaptic programming event) of the human brain.
Ibm Journal of Research and Development | 2008
S. F. Karg; G. I. Meijer; J. G. Bednorz; C. T. Rettner; Alejandro G. Schrott; E. A. Joseph; Chung Hon Lam; M. Janousch; U. Staub; F. La Mattina; Santos F. Alvarado; D. Widmer; Richard Stutz; Ute Drechsler; D. Caimi
We provide a status report on the development of perovskite-based transition-metal-oxide resistance-change memories. We focus on bipolar resistance switching observed in Cr-doped SrTiO3 memory cells with dimensions ranging from bulk single crystals to CMOS integrated nanoscale devices. We also discuss electronic and ionic processes during electroforming and resistance switching, as evidenced from electron-parametric resonance (EPR), x-ray absorption spectroscopy, electroluminescence spectroscopy, thermal imaging, and transport experiments. EPR in combination with electroluminescence reveals electron trapping and detrapping processes at the Cr site. Results of x-ray absorption experiments prove that the microscopic origin of the electroforming, that is, the insulator-to-metal transition, is the creation of oxygen vacancies. Cr-doped SrTiO3 memory cells exhibit short programming times (≤100 ns) and low programming currents (<100 µA) with up to 105 write and erase cycles.
Journal of Vacuum Science and Technology | 1990
Chin‐An Chang; Yong‐Kil Kim; Alejandro G. Schrott
Adhesion of metal films to several fluorocarbon polymer films is studied for Cu, Cr, Ti, Al, and Au. The polymers include polytetrafluoroethylene (PTFE), fluoroethylenepropylene (FEP), and a copolymer containing a perfluoroalkoxy group (PFA), all deposited on Cr/SiO2 substrates by spin coating. Peel strengths of the metal strips on these polymers are compared and are taken as measures of the metal–polymer adhesion. Among the polymers, FEP gives the highest peel strengths to metals, with PTFE the lowest. Among the metals, Ti gives the highest peel strength for each polymer, followed by Cr, with Cu being the lowest. The peel strengths for Ti on FEP, PFA, and PTFE are 85, 75, and 20 g/mm, respectively. Those for Cu to the polymers are around 5 g/mm or less. The strong adhesion for the metals on both FEP and PFA is attributed to the high concentration of carbon sites with three fluorine neighbors, by considering the electronegativities among the various carbon sites in the polymer chains. Among the metals, so...
international electron devices meeting | 2011
Huai-Yu Cheng; T.H. Hsu; Simone Raoux; Jau-Yi Wu; P. Y. Du; M. Breitwisch; Yu Zhu; Erh-Kun Lai; Eric A. Joseph; Surbhi Mittal; Roger W. Cheek; Alejandro G. Schrott; Sheng-Chih Lai; Hsiang-Lan Lung; Chung Hon Lam
Phase change memory has long suffered from conflicting material properties between switching speed and thermal stability. This study explores the engineering of GeSbTe ternary alloys along an isoelectronic tie line and the Ge/Sb2Te3 tie line with the hope of finding a high performance material. Our efforts resulted in a new material that considerably outperforms the conventional GST-225. The switching speed is similar to undoped GST-225, with ∼ 30% lower reset current, and nearly 100°C higher Tx, thus much better thermal stability. The promising properties of this new material are demonstrated in a 128Mb chip and tested both at wafer level and as packaged dies. These devices showed 1E8 cycling endurance and withstood 190 °C testing.
international electron devices meeting | 2011
Jau-Yi Wu; Matthew J. Breitwisch; Seongwon Kim; T.H. Hsu; Roger W. Cheek; P. Y. Du; Jing Li; Erh-Kun Lai; Yu Zhu; Tien-Yen Wang; Huai-Yu Cheng; Alejandro G. Schrott; Eric A. Joseph; R. Dasaka; Simone Raoux; Ming-Hsiu Lee; Hsiang-Lan Lung; Chung Hon Lam
Application of phase change memory (PCM) has been limited by the high power required to reset the device (changing from crystalline to amorphous state by melting the phase change material). Utilizing the poor thermal and electrical conductivity of TaN we have designed a simple structure that thermally insulates the bottom electrode and thus drastically reduces the heat loss. A 39nm bottom electrode with a TaN thermal barrier and 1.5nm of TiN conductor has demonstrated 30µA reset current, representing a 90% reduction. The benefit of thermal insulation is understood through electrothermal simulation, and the benefit is demonstrated in a 256Mb test chip. The low reset current also improves the reliability and excellent cycling endurance >1E9 is observed. This low power device is promising for expanding the application for PCM.
symposium on vlsi technology | 2008
Bipin Rajendran; Ming-Hsiu Lee; M. Breitwisch; Geoffrey W. Burr; Y.H. Shih; Roger W. Cheek; Alejandro G. Schrott; C.-F. Chen; M. Lamorey; Eric A. Joseph; Yu Zhu; R. Dasaka; Philip L. Flaitz; F. Baumann; Hsiang-Lan Lung; Chung Hon Lam
A novel characterization metric for phase change memory based on the measured cell resistance during RESET programming is introduced. We show that this dasiadynamic resistancepsila (Rd) is inversely related to the programming current (I), as Rd = [A/I] + B. While the slope parameter A depends only on the intrinsic properties of the phase change material, the intercept B also depends on the effective physical dimensions of the memory element. We demonstrate that these two parameters provide characterization and insight into the degradation mechanisms of memory cells during operation.
international electron devices meeting | 2009
Yen-Hao Shih; Ming-Hsiu Lee; M. Breitwisch; Roger W. Cheek; Jau-Yi Wu; Bipin Rajendran; Yu Zhu; Erh-Kun Lai; Chieh Fang Chen; Huai-Yu Cheng; Alejandro G. Schrott; Eric A. Joseph; R. Dasaka; Simone Raoux; Hsiang-Lan Lung; Chung Hon Lam
A method based on Frenkel-Poole emission is proposed to model the amorphous state (high resistance state) in mushroom-type phase-change memory devices. The model provides unique insights to probe the device after amorphizing (RESET) operation. Even when the resistance appears the same under different RESET conditions, our model suggests that both the amorphous region size and the defect states are different. With this powerful new tool, detailed changes inside the amorphous GST for MLC operation and retention tests are revealed.