Christopher S. Hackett
University of California, San Francisco
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Christopher S. Hackett.
Science Signaling | 2010
Qi-Wen Fan; Christopher H.K. Cheng; Christopher S. Hackett; Morris E. Feldman; Benjamin T. Houseman; Theodore Nicolaides; Daphne A. Haas-Kogan; Charles David James; Scott A. Oakes; Jayanta Debnath; Kevan M. Shokat; William A. Weiss
Combined inhibition of PI3K, mTOR, and autophagy promotes glioma cell death. Blocking All Escape Routes Many cancers, including glioma, are associated with increased signaling through the phosphatidylinositol 3-kinase to Akt to mammalian target of rapamycin (PI3K-Akt-mTOR) pathway, which promotes cell growth, proliferation, and survival. This suggests that pharmacological inhibition of key kinases in this pathway could provide an approach to antineoplastic therapy. Disappointingly, however, inhibitors of PI3K, Akt, or mTOR typically block cancer cell growth rather than eliciting the death of malignant cells, limiting their utility as antineoplastic agents. Noting that autophagy, a process of autodigestion that can enable cells to endure periods of stress and nutrient deprivation, could provide a survival mechanism under conditions of decreased PI3K-Akt-mTOR signaling, Fan et al. explored the effects of various combinations of kinase and autophagy inhibitors on glioma cell survival. Inhibition of mTOR complex 1 (mTORC1) with rapamycin induced autophagy; however, cells survived the combination of rapamycin with inhibitors of autophagy by activating Akt signaling. In contrast, the combined inhibition of mTORC1, PI3K, and autophagy, or that of mTORC1, mTORC2, and autophagy, triggered apoptosis—the process of programmed cell death. The authors elicited cell death with combinations of drugs that are either now in use in patients or in clinical trials, raising the hope that this approach could be readily translatable to human therapy. Although the phosphatidylinositol 3-kinase to Akt to mammalian target of rapamycin (PI3K-Akt-mTOR) pathway promotes survival signaling, inhibitors of PI3K and mTOR induce minimal cell death in PTEN (phosphatase and tensin homolog deleted from chromosome 10) mutant glioma. Here, we show that the dual PI3K-mTOR inhibitor PI-103 induces autophagy in a form of glioma that is resistant to therapy. Inhibitors of autophagosome maturation cooperated with PI-103 to induce apoptosis through the mitochondrial pathway, indicating that the cellular self-digestion process of autophagy acted as a survival signal in this setting. Not all inhibitors of mTOR synergized with inhibitors of autophagy. Rapamycin delivered alone induced autophagy, yet cells survived inhibition of autophagosome maturation because of rapamycin-mediated activation of Akt. In contrast, adenosine 5′-triphosphate–competitive inhibitors of mTOR stimulated autophagy more potently than did rapamycin, with inhibition of mTOR complexes 1 and 2 contributing independently to induction of autophagy. We show that combined inhibition of PI3K and mTOR, which activates autophagy without activating Akt, cooperated with inhibition of autophagy to cause glioma cells to undergo apoptosis. Moreover, the PI3K-mTOR inhibitor NVP-BEZ235, which is in clinical use, synergized with the lysosomotropic inhibitor of autophagy, chloroquine, another agent in clinical use, to induce apoptosis in glioma xenografts in vivo, providing a therapeutic approach potentially translatable to humans.
Cancer Research | 2007
Qi-Wen Fan; Christine K. Cheng; Theodore Nicolaides; Christopher S. Hackett; Zachary A. Knight; Kevan M. Shokat; William A. Weiss
We have shown previously that blockade of epidermal growth factor receptor (EGFR) cooperates with a pan-selective inhibitor of phosphoinositide-3-kinase (PI3K) in EGFR-driven glioma. In this communication, we tested EGFR-driven glioma differing in PTEN status, treating with the EGFR inhibitor erlotinib and a novel dual inhibitor of PI3Kalpha and mTOR (PI-103). Erlotinib blocked proliferation only in PTEN(wt) cells expressing EGFR. Although erlotinib monotherapy showed little effect in PTEN(mt) glioma, PI-103 greatly augmented the antiproliferative efficacy of erlotinib in this setting. To address the importance of PI3K blockade, we showed in PTEN(mt) glioma that combining PI-103 and erlotinib was superior to either monotherapy or to therapy combining erlotinib with either rapamycin (an inhibitor of mTOR) or PIK-90 (an inhibitor of PI3Kalpha). These experiments show that a dual inhibitor of PI3Kalpha and mTOR augments the activity of EGFR blockade, offering a mechanistic rationale for targeting EGFR, PI3Kalpha, and mTOR in the treatment of EGFR-driven, PTEN-mutant glioma.
Nature Medicine | 2010
Alexander Swarbrick; Susan L. Woods; Alex D. Shaw; Asha Balakrishnan; Yuwei Phua; Akira Nguyen; Yvan Chanthery; Lionel Lim; Lesley J. Ashton; Robert L. Judson; Noelle E. Huskey; Robert Blelloch; Michelle Haber; Murray D. Norris; Peter Lengyel; Christopher S. Hackett; Thomas Preiss; Albert Chetcuti; Christopher S. Sullivan; Eric G. Marcusson; William A. Weiss; Noelle D. L'Etoile; Andrei Goga
Inactivation of the p53 tumor suppressor pathway allows cell survival in times of stress and occurs in many human cancers; however, normal embryonic stem cells and some cancers such as neuroblastoma maintain wild-type human TP53 and mouse Trp53 (referred to collectively as p53 herein). Here we describe a miRNA, miR-380-5p, that represses p53 expression via a conserved sequence in the p53 3′ untranslated region (UTR). miR-380-5p is highly expressed in mouse embryonic stem cells and neuroblastomas, and high expression correlates with poor outcome in neuroblastomas with neuroblastoma derived v-myc myelocytomatosis viral-related oncogene (MYCN) amplification. miR-380 overexpression cooperates with activated HRAS oncoprotein to transform primary cells, block oncogene-induced senescence and form tumors in mice. Conversely, inhibition of endogenous miR-380-5p in embryonic stem or neuroblastoma cells results in induction of p53, and extensive apoptotic cell death. In vivo delivery of a miR-380-5p antagonist decreases tumor size in an orthotopic mouse model of neuroblastoma. We demonstrate a new mechanism of p53 regulation in cancer and stem cells and uncover a potential therapeutic target for neuroblastoma.
Genes & Development | 2010
Fredrik J. Swartling; Matthew R. Grimmer; Christopher S. Hackett; Paul A. Northcott; Qi-Wen Fan; David D. Goldenberg; Jasmine Lau; Selma Masic; Kim Nguyen; Slava Yakovenko; Xiao-Ning Zhe; Heather C. Flynn Gilmer; Rodney Collins; Mai Nagaoka; Joanna J. Phillips; Robert B. Jenkins; Tarik Tihan; Scott R. VandenBerg; C. David James; Kohichi Tanaka; Michael D. Taylor; William A. Weiss; Louis Chesler
Medulloblastoma (MB) is the most common malignant brain tumor of childhood. Sonic Hedgehog (SHH) signaling drives a minority of MB, correlating with desmoplastic pathology and favorable outcome. The majority, however, arises independently of SHH and displays classic or large cell anaplastic (LCA) pathology and poor prognosis. To identify common signaling abnormalities, we profiled mRNA, demonstrating misexpression of MYCN in the majority of human MB and negligible expression in normal cerebella. We clarified a role in pathogenesis by targeting MYCN (and luciferase) to cerebella of transgenic mice. MYCN-driven MB showed either classic or LCA pathologies, with Shh signaling activated in approximately 5% of tumors, demonstrating that MYCN can drive MB independently of Shh. MB arose at high penetrance, consistent with a role for MYCN in initiation. Tumor burden correlated with bioluminescence, with rare metastatic spread to the leptomeninges, suggesting roles for MYCN in both progression and metastasis. Transient pharmacological down-regulation of MYCN led to both clearance and senescence of tumor cells, and improved survival. Targeted expression of MYCN thus contributes to initiation, progression, and maintenance of MB, suggesting a central role for MYCN in pathogenesis.
Cancer Cell | 2012
Fredrik J. Swartling; Vasil Savov; Anders Persson; Justin Chen; Christopher S. Hackett; Paul A. Northcott; Matthew R. Grimmer; Jasmine Lau; Louis Chesler; Arie Perry; Joanna J. Phillips; Michael D. Taylor; William A. Weiss
The proto-oncogene MYCN is mis-expressed in various types of human brain tumors. To clarify how developmental and regional differences influence transformation, we transduced wild-type or mutationally stabilized murine N-myc(T58A) into neural stem cells (NSCs) from perinatal murine cerebellum, brain stem, and forebrain. Transplantation of N-myc(WT) NSCs was insufficient for tumor formation. N-myc(T58A) cerebellar and brain stem NSCs generated medulloblastoma/primitive neuroectodermal tumors, whereas forebrain NSCs developed diffuse glioma. Expression analyses distinguished tumors generated from these different regions, with tumors from embryonic versus postnatal cerebellar NSCs demonstrating Sonic Hedgehog (SHH) dependence and SHH independence, respectively. These differences were regulated in part by the transcription factor SOX9, activated in the SHH subclass of human medulloblastoma. Our results demonstrate context-dependent transformation of NSCs in response to a common oncogenic signal.
Nucleic Acids Research | 2006
Aron M. Geurts; Christopher S. Hackett; Jason B. Bell; Tracy L. Bergemann; Lara S. Collier; Corey M. Carlson; David A. Largaespada; Perry B. Hackett
Mobile genetic elements with the ability to integrate genetic information into chromosomes can cause disease over short periods of time and shape genomes over eons. These elements can be used for functional genomics, gene transfer and human gene therapy. However, their integration-site preferences, which are critically important for these uses, are poorly understood. We analyzed the insertion sites of several transposons and retroviruses to detect patterns of integration that might be useful for prediction of preferred integration sites. Initially we found that a mathematical description of DNA-deformability, called Vstep, could be used to distinguish preferential integration sites for Sleeping Beauty (SB) transposons into a particular 100 bp region of a plasmid [G. Liu, A. M. Geurts, K. Yae, A. R. Srinivassan, S. C. Fahrenkrug, D. A. Largaespada,J. Takeda, K. Horie, W. K. Olson and P. B. Hackett (2005) J. Mol. Biol., 346, 161–173 ]. Based on these findings, we extended our examination of integration of SB transposons into whole plasmids and chromosomal DNA. To accommodate sequences up to 3 Mb for these analyses, we developed an automated method, ProTIS©, that can generate profiles of predicted integration events. However, a similar approach did not reveal any structural pattern of DNA that could be used to predict favored integration sites for other transposons as well as retroviruses and lentiviruses due to a limitation of available data sets. Nonetheless, ProTIS© has the utility for predicting likely SB transposon integration sites in investigator-selected regions of genomes and our general strategy may be useful for other mobile elements once a sufficiently high density of sites in a single region are obtained. ProTIS analysis can be useful for functional genomic, gene transfer and human gene therapy applications using the SB system.
Cancer Research | 2009
Lara S. Collier; David J. Adams; Christopher S. Hackett; Laura Bendzick; Keiko Akagi; Michael N. Davies; Miechaleen D. Diers; Fausto J. Rodriguez; Aaron M. Bender; Christina Tieu; Ilze Matise; Adam J. Dupuy; Neal G. Copeland; Nancy A. Jenkins; J. Graeme Hodgson; William A. Weiss; Robert B. Jenkins; David A. Largaespada
The Sleeping Beauty (SB) transposon system has been used as a somatic mutagen to identify candidate cancer genes. In previous studies, efficient leukemia/lymphoma formation on an otherwise wild-type genetic background occurred in mice undergoing whole-body mobilization of transposons, but was accompanied by high levels of embryonic lethality. To explore the utility of SB for large-scale cancer gene discovery projects, we have generated mice that carry combinations of different transposon and transposase transgenes. We have identified a transposon/transposase combination that promotes highly penetrant leukemia/lymphoma formation on an otherwise wild-type genetic background, yet does not cause embryonic lethality. Infiltrating gliomas also occurred at lower penetrance in these mice. SB-induced or accelerated tumors do not harbor large numbers of chromosomal amplifications or deletions, indicating that transposon mobilization likely promotes tumor formation by insertional mutagenesis of cancer genes, and not by promoting wide-scale genomic instability. Cloning of transposon insertions from lymphomas/leukemias identified common insertion sites at known and candidate novel cancer genes. These data indicate that a high mutagenesis rate can be achieved using SB without high levels of embryonic lethality or genomic instability. Furthermore, the SB system could be used to identify new genes involved in lymphomagenesis/leukemogenesis.
Science Translational Medicine | 2012
Yvan Chanthery; William Clay Gustafson; Melissa Itsara; Anders Persson; Christopher S. Hackett; Matthew R. Grimmer; Elizabeth Charron; Grace E. Kim; Katherine K. Matthay; William A. Weiss
PI3K/mTOR inhibitors inhibit angiogenesis by blocking MYCN-dependent paracrine signaling between tumor and endothelial cells. Childhood Cancers—and MYCN Therapy—Strike a Nerve It’s easy to become jaded by the current celebrity-advocate overload. But appeals for children suffering from lethal cancers never fail to tug at the heartstrings. Consider the disease neuroblastoma, one of the most common childhood cancers: Nearly half of the cases occur in children under 2 years of age, and treatments for the so-called high-risk version of the disease often fail. But mouse models of neuroblastoma provide a clue: Overexpression of the MYCN proto-oncogene foreshadows treatment failure. Now, Chanthery et al. demonstrate that a drug currently being tested in clinical trials for solid tumors improves survival by targeting the MYCN protein. This promising drug, NVP-BEZ235, inhibits the phosphatidylinositol 3-kinase (PI3K)/mammalian target of rapamycin (mTOR) signaling pathway, which is frequently activated in cancers. NVP-BEZ235 blocked new blood vessel formation (angiogenesis) by tumors and improved survival in two mouse models of neuroblastoma, a xenograft variety developed with primary tumor from patients and a genetic model in which the MYCN gene drives spontaneous tumor formation in mice. The antiangiogenic effect depended in part on function of the MYCN protein, a transcriptional regulator: NVP-BEZ235 therapy spurred degradation of MYCN in tumor cells, which, in turn, produced local (paracrine) effects that inhibited angiogenesis, a process required for tumor growth and metastasis. Future clinical trials will reveal whether NVP-BEZ235 represents a new therapeutic option for MYCN-amplified neuroblastoma—and a chance for sick toddlers to thrive. Neuroblastoma, a tumor of peripheral neural crest origin, numbers among the most common childhood cancers. Both amplification of the proto-oncogene MYCN and increased neoangiogenesis mark high-risk disease. Because angiogenesis is regulated by phosphatidylinositol 3-kinase (PI3K), we tested a clinical PI3K inhibitor, NVP-BEZ235, in MYCN-dependent neuroblastoma. NVP-BEZ235 decreased angiogenesis and improved survival in both primary human (highly pretreated recurrent MYCN-amplified orthotopic xenograft) and transgenic mouse models for MYCN-driven neuroblastoma. Using both gain- and loss-of-function approaches, we demonstrated that the antiangiogenic efficacy of NVP-BEZ235 depended critically on MYCN in vitro and in vivo. Thus, clinical PI3K/mammalian target of rapamycin inhibitors drove degradation of MYCN in tumor cells, with secondary paracrine blockade of angiogenesis. Our data demonstrated significantly improved survival in treated animals and suggest that NVP-BEZ235 should be tested in children with high-risk, MYCN-amplified neuroblastoma.
Genome Biology | 2007
Christopher S. Hackett; Aron M. Geurts; Perry B. Hackett
Viral and transposon vectors have been employed in gene therapy as well as functional genomics studies. However, the goals of gene therapy and functional genomics are entirely different; gene therapists hope to avoid altering endogenous gene expression (especially the activation of oncogenes), whereas geneticists do want to alter expression of chromosomal genes. The odds of either outcome depend on a vectors preference to integrate into genes or control regions, and these preferences vary between vectors. Here we discuss the relative strengths of DNA vectors over viral vectors, and review methods to overcome barriers to delivery inherent to DNA vectors. We also review the tendencies of several classes of retroviral and transposon vectors to target DNA sequences, genes, and genetic elements with respect to the balance between insertion preferences and oncogenic selection. Theoretically, knowing the variables that affect integration for various vectors will allow researchers to choose the vector with the most utility for their specific purposes. The three principle benefits from elucidating factors that affect preferences in integration are as follows: in gene therapy, it allows assessment of the overall risks for activating an oncogene or inactivating a tumor suppressor gene that could lead to severe adverse effects years after treatment; in genomic studies, it allows one to discern random from selected integration events; and in gene therapy as well as functional genomics, it facilitates design of vectors that are better targeted to specific sequences, which would be a significant advance in the art of transgenesis.
Genes & Development | 2012
Xi Huang; Adrian Dubuc; Rintaro Hashizume; Jim Berg; Ye He; Ji Wang; Chin Chiang; Michael K. Cooper; Paul A. Northcott; Michael D. Taylor; Michael Barnes; Tarik Tihan; Justin Chen; Christopher S. Hackett; William A. Weiss; C. David James; David H. Rowitch; Marc A. Shuman; Yuh Nung Jan; Lily Yeh Jan
Medulloblastoma (MB) is the most common pediatric CNS malignancy. We identify EAG2 as an overexpressed potassium channel in MBs across different molecular and histological subgroups. EAG2 knockdown not only impairs MB cell growth in vitro, but also reduces tumor burden in vivo and enhances survival in xenograft studies. Mechanistically, we demonstrate that EAG2 protein is confined intracellularly during interphase but is enriched in the plasma membrane during late G2 phase and mitosis. Disruption of EAG2 expression results in G2 arrest and mitotic catastrophe associated with failure of premitotic cytoplasmic condensation. While the tumor suppression function of EAG2 knockdown is independent of p53 activation, DNA damage checkpoint activation, or changes in the AKT pathway, this defective cell volume control is specifically associated with hyperactivation of the p38 MAPK pathway. Inhibition of the p38 pathway significantly rescues the growth defect and G2 arrest. Strikingly, ectopic membrane expression of EAG2 in cells at interphase results in cell volume reduction and mitotic-like morphology. Our study establishes the functional significance of EAG2 in promoting MB tumor progression via regulating cell volume dynamics, the perturbation of which activates the tumor suppressor p38 MAPK pathway, and provides clinical relevance for targeting this ion channel in human MBs.