Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Colin T. Carver is active.

Publication


Featured researches published by Colin T. Carver.


international interconnect technology conference | 2013

Demonstration of a 12 nm-half-pitch copper ultralow-k interconnect process

Jasmeet S. Chawla; Ramanan V. Chebiam; Rohan Akolkar; G. Allen; Colin T. Carver; James S. Clarke; Florian Gstrein; M. Harmes; Tejaswi K. Indukuri; Christopher J. Jezewski; Brian Krist; Hazel Lang; Alan Myers; R. Schenker; Kanwal Jit Singh; R. Turkot; Hui Jae Yoo

A process to achieve 12 nm half-pitch interconnect structures in ultralow-k interlayer dielectric (ILD) is realized using standard 193 nm lithography. An optimized pattern transfer that minimizes unwanted distortion of ILD features is followed by copper fill. Electrical measurements that validate functionality of the drawn structures are presented.


international interconnect technology conference | 2016

Resistance and electromigration performance of 6 nm wires

Jasmeet S. Chawla; Seung Hoon Sung; Stephanie A. Bojarski; Colin T. Carver; Manish Chandhok; Ramanan V. Chebiam; James S. Clarke; M. Harmes; Christopher J. Jezewski; M. J. Kobrinski; Brian Krist; Mona Mayeh; R. Turkot; Hui Jae Yoo

A process to achieve 6 nm minimum dimension interconnect wires is realized using standard 193 nm lithography. Various metals including copper are optimized to gap fill features, and tested for electrical performance and reliability. Measurements showing line electrical resistance and electromigration as functions of material, conducting area, and interfaces are presented.


international interconnect technology conference | 2015

Simple test vehicle for metal fill and resistance of sub-8nm nanowire

Seung Hoon Sung; Jasmeet S. Chawla; Colin T. Carver; Ramanan V. Chebiam; James S. Clarke; Chris Jezewski; Tristan A. Tronic; Bob Turkot; Hui Jae Yoo

Assessing metal gap fill capability and electrical behavior in patterned features ahead of full integration is valuable in interconnect process development as feature sizes scale beyond the 14 nm technology node. In this work a simple device is fabricated with existing silicon patterning recipes to achieve an electrical test vehicle that can test a range of metal candidates for interconnects. The vehicle is characterized using electron microscopy and electrical measurements.


international interconnect technology conference | 2014

Demonstration of a sidewall capacitor to evaluate dielectrics and metal barrier thin films

Kevin L. Lin; Colin T. Carver; Ramanan V. Chebiam; James S. Clarke; Jacob Faber; M. Harmes; Tejaswi K. Indukuri; Christopher J. Jezewski; Mauro J. Kobrinsky; Brian Krist; Narendra Lakamraju; Hazel Lang; Alan Myers; John J. Plombon; Kanwal Jit Singh; Hui Jae Yoo

A sidewall planar capacitor (SW CAP) vehicle is developed to closely simulate processing conditions for metal barrier and dielectric in an integrated structure. For a known tantalum barrier for copper on a low-K dielectric, SW CAP TDDB is similar to those measured on an integrated vehicle. SW CAP results are useful for comparing electrical reliability of different dielectric systems, and effective in determining physical continuity of copper metal barriers.


international interconnect technology conference | 2015

Demonstration of new planar capacitor (PCAP) vehicles to evaluate dielectrics and metal barrier thin films

Kevin L. Lin; J. Bielefeld; Jasmeet S. Chawla; Colin T. Carver; Ramanan V. Chebiam; James S. Clarke; Jacob Faber; M. Harmes; Tejaswi K. Indukuri; Christopher J. Jezewski; Rahim Kasim; Mauro J. Kobrinsky; Nafees A. Kabir; Brian Krist; Narendra Lakamraju; Hazel Lang; Ebony Mays; Alan Myers; John J. Plombon; Kanwal Jit Singh; Jessica M. Torres; Hui Jae Yoo

Planar capacitors can quickly test material properties of metals and dielectrics for interconnects. A sidewall capacitor device is used to evaluate metal thin-film barriers. Etch stop planar capacitors in turn can test multi-layer etch stops, exposing differences between leaky and good etch stop films. Fillable planar capacitors are also fabricated and results presented for that class of fill materials.


international interconnect technology conference | 2015

Nickel silicide for interconnects

Kevin L. Lin; Stephanie A. Bojarski; Colin T. Carver; Manish Chandhok; Jasmeet S. Chawla; James S. Clarke; M. Harmes; Brian Krist; Hazel Lang; Mona Mayeh; Sudipto Naskar; John J. Plombon; Seung Hoon Sung; Hui Jae Yoo

Nickel silicide is an attractive option for interconnects at small dimensions because of its short electron mean free path and good electromigration behavior. Nickel silicide interconnects can be integrated using either a subtractive or damascene process. Precise control of final metal composition ratio is important for obtaining low resistivity, as shown in thin-film and patterned structure measurements.


ECS Journal of Solid State Science and Technology | 2015

Atomic Layer Etching: An Industry Perspective

Colin T. Carver; John J. Plombon; Patricio E. Romero; Satyarth Suri; Tristan A. Tronic; Robert B. Turkot


ECS Journal of Solid State Science and Technology | 2015

Characterization of Particle Size and Surface Adsorption for SiO2 Abrasives Used in Chemical Mechanical Planarization via Fluorescence Correlation Spectroscopy

Lauren M. Jacobson; Daniel K. Turner; Ashley E. Wayman; Colin T. Carver; Ashwani K. Rawat; Mansour Moinpour; Edward E. Remsen


Archive | 2015

Interconnects with fully clad lines

Manish Chandhok; Hui Jae Yoo; Christopher J. Jezewski; Ramanan V. Chebiam; Colin T. Carver


225th ECS Meeting (May 11-15, 2014) | 2014

Application of Fluorescence Correlation Spectroscopy in the Characterization of Particle Size Distributions of Colloidal Silica Abrasives Used in Chemical-Mechanical Planarization

Lauren M. Jacobson; Daniel K. Turner; Ashwani K. Rawat; Colin T. Carver; Abhinav Tripahi; Mansour Moinpour; Edward E. Remsen

Collaboration


Dive into the Colin T. Carver's collaboration.

Researchain Logo
Decentralizing Knowledge