Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Cory E. Weber is active.

Publication


Featured researches published by Cory E. Weber.


symposium on vlsi technology | 2012

A 22nm high performance and low-power CMOS technology featuring fully-depleted tri-gate transistors, self-aligned contacts and high density MIM capacitors

Christopher Auth; C. Allen; A. Blattner; D. Bergstrom; M. Brazier; M. Bost; M. Buehler; V. Chikarmane; Tahir Ghani; T. Glassman; R. Grover; W. Han; D. Hanken; M. Hattendorf; P. Hentges; R. Heussner; J. Hicks; D. Ingerly; P. Jain; S. Jaloviar; R. James; D. Jones; J. Jopling; S. Joshi; C. Kenyon; Huichu Liu; R. McFadden; B. McIntyre; J. Neirynck; C. Parker

A 22nm generation logic technology is described incorporating fully-depleted tri-gate transistors for the first time. These transistors feature a 3rd-generation high-k + metal-gate technology and a 5th generation of channel strain techniques resulting in the highest drive currents yet reported for NMOS and PMOS. The use of tri-gate transistors provides steep subthreshold slopes (~70mV/dec) and very low DIBL (~50mV/V). Self-aligned contacts are implemented to eliminate restrictive contact to gate registration requirements. Interconnects feature 9 metal layers with ultra-low-k dielectrics throughout the interconnect stack. High density MIM capacitors using a hafnium based high-k dielectric are provided. The technology is in high volume manufacturing.


international electron devices meeting | 2002

A 90 nm logic technology featuring 50 nm strained silicon channel transistors, 7 layers of Cu interconnects, low k ILD, and 1 /spl mu/m/sup 2/ SRAM cell

S. Thompson; N. Anand; Mark Armstrong; C. Auth; B. Arcot; Mohsen Alavi; P. Bai; J. Bielefeld; R. Bigwood; J. Brandenburg; M. Buehler; Stephen M. Cea; V. Chikarmane; C.-H. Choi; R. Frankovic; Tahir Ghani; G. Glass; W. Han; T. Hoffmann; M. Hussein; P. Jacob; A. Jain; Chia-Hong Jan; S. Joshi; C. Kenyon; Jason Klaus; S. Klopcic; J. Luce; Z. Ma; B. McIntyre

A leading edge 90 nm technology with 1.2 nm physical gate oxide, 50 nm gate length, strained silicon, NiSi, 7 layers of Cu interconnects, and low k carbon-doped oxide (CDO) for high performance dense logic is presented. Strained silicon is used to increase saturated NMOS and PMOS drive currents by 10-20% and mobility by >50%. Aggressive design rules and unlanded contacts offer a 1.0 /spl mu/m/sup 2/ 6-T SRAM cell using 193 nm lithography.


international electron devices meeting | 2004

A 65nm logic technology featuring 35nm gate lengths, enhanced channel strain, 8 Cu interconnect layers, low-k ILD and 0.57 /spl mu/m/sup 2/ SRAM cell

P. Bai; C. Auth; S. Balakrishnan; M. Bost; Ruth A. Brain; V. Chikarmane; R. Heussner; M. Hussein; Jack Hwang; D. Ingerly; R. James; J. Jeong; C. Kenyon; E. Lee; S.-H. Lee; Nick Lindert; Mark Y. Liu; Z. Ma; T. Marieb; Anand S. Murthy; R. Nagisetty; Sanjay S. Natarajan; J. Neirynck; A. Ott; C. Parker; J. Sebastian; R. Shaheed; Sam Sivakumar; Joseph M. Steigerwald; Sunit Tyagi

A 65nm generation logic technology with 1.2nm physical gate oxide, 35nm gate length, enhanced channel strain, NiSi, 8 layers of Cu interconnect, and low-k ILD for dense high performance logic is presented. Transistor gate length is scaled down to 35nm while not scaling the gate oxide as a means to improve performance and reduce power. Increased NMOS and PMOS drive currents are achieved by enhanced channel strain and junction engineering. 193nm lithography along with APSM mask technology is used on critical layers to provide aggressive design rules and a 6-T SRAM cell size of 0.57/spl mu/m/sup 2/. Process yield, performance and reliability are demonstrated on a 70 Mbit SRAM test vehicle with >0.5 billion transistors.


international electron devices meeting | 2009

High performance 32nm logic technology featuring 2 nd generation high-k + metal gate transistors

P. Packan; S. Akbar; Mark Armstrong; D. Bergstrom; M. Brazier; H. Deshpande; K. Dev; G. Ding; Tahir Ghani; Oleg Golonzka; W. Han; Jun He; R. Heussner; R. James; J. Jopling; C. Kenyon; S-H. Lee; Mark Y. Liu; S. Lodha; B. Mattis; Anand S. Murthy; L. Neiberg; J. Neirynck; Sangwoo Pae; C. Parker; L. Pipes; J. Sebastian; J. Seiple; B. Sell; Ajay K. Sharma

A 32nm logic technology for high performance microprocessors is described. 2nd generation high-k + metal gate transistors provide record drive currents at the tightest gate pitch reported for any 32nm or 28nm logic technology. NMOS drive currents are 1.62mA/um Idsat and 0.231mA/um Idlin at 1.0V and 100nA/um Ioff. PMOS drive currents are 1.37mA/um Idsat and 0.240mA/um Idlin at 1.0V and 100nA/um Ioff. The impact of SRAM cell and array size on Vccmin is reported.


international electron devices meeting | 2008

A 32nm logic technology featuring 2 nd -generation high-k + metal-gate transistors, enhanced channel strain and 0.171μm 2 SRAM cell size in a 291Mb array

Sanjay S. Natarajan; Mark Armstrong; M. Bost; Ruth A. Brain; M. Brazier; C.-H. Chang; V. Chikarmane; M. Childs; H. Deshpande; K. Dev; G. Ding; Tahir Ghani; Oleg Golonzka; W. Han; J. He; R. Heussner; R. James; I. Jin; C. Kenyon; S. Klopcic; S.-H. Lee; Mark Y. Liu; S. Lodha; B. McFadden; Anand S. Murthy; L. Neiberg; J. Neirynck; P. Packan; S. Pae; C. Parker

A 32 nm generation logic technology is described incorporating 2nd-generation high-k + metal-gate technology, 193 nm immersion lithography for critical patterning layers, and enhanced channel strain techniques. The transistors feature 9 Aring EOT high-k gate dielectric, dual band-edge workfunction metal gates, and 4th-generation strained silicon, resulting in the highest drive currents yet reported for NMOS and PMOS. Process yield, performance and reliability are demonstrated on a 291 Mbit SRAM test vehicle, with 0.171 mum2 cell size, containing >1.9 billion transistors.


international electron devices meeting | 2008

High performance Hi-K + metal gate strain enhanced transistors on (110) silicon

P. Packan; S. Cea; H. Deshpande; Tahir Ghani; Martin D. Giles; Oleg Golonzka; M. Hattendorf; Roza Kotlyar; Kelin J. Kuhn; Anand S. Murthy; P. Ranade; Lucian Shifren; Cory E. Weber; K. Zawadzki

For the first time, the performance impact of (110) silicon substrates on high-k + metal gate strained 45 nm node NMOS and PMOS devices is presented. Record PMOS drive currents of 1.2 mA/um at 1.0 V and 100 nA/um Ioff are reported. It will be demonstrated that 2D short channel effects strongly mitigate the negative impact of (110) substrates on NMOS performance. Narrow width (110) device performance is shown and compared to (100) for the first time. Device reliability is also reported showing no fundamental issue for (110) substrates.


IEEE Electron Device Letters | 2011

Effects of Surface Orientation on the Performance of Idealized III–V Thin-Body Ballistic n-MOSFETs

Raseong Kim; Titash Rakshit; Roza Kotlyar; Sayed Hasan; Cory E. Weber

Ballistic on-currents of thin-body n-channel metal-oxide-semiconductor field-effect transistors (n-MOSFETs) are compared across group IV (Si, Ge) and III-V (InAs, In0.5Ga0.5As, GaAs, GaSb) materials for different body thickness values, surface orientations, and transport directions under several idealization assumptions. Previous simulation studies have shown that, as oxide capacitance increases, typical III-V channels with (100) surface perform worse than Si in the ballistic limit due to the degraded density-of-states (DOS). In this letter, simulation results based on tight-binding band structure calculations verify a recent proposal that confined III-V n-MOSFETs with small Γ-L separations overcome the DOS bottleneck and deliver high injection velocities, boosting on-current performance. By using the quantized L-valleys, GaSb with (100) or (111) surface orientations shows the best ballistic performance, outperforming all other materials. Although GaAs (100) and InAs or In0.5Ga0.5As with any surface orientation suffer from the DOS bottleneck, GaAs (111) gives higher ballistic on -currents than Si does.


Applied Physics Letters | 2004

Drive current enhancement in p-type metal–oxide–semiconductor field-effect transistors under shear uniaxial stress

Lucian Shifren; Xiaofei Wang; P. Matagne; Borna Obradovic; C. Auth; S. Cea; Tahir Ghani; Jun He; Thomas Hoffman; Roza Kotlyar; Zhiyong Ma; K. Mistry; Ramune Nagisetty; R. Shaheed; Mark Stettler; Cory E. Weber; Martin D. Giles

Recent attention has been given to metal–oxide–semiconductor field-effect transistor (MOSFET) device designs that utilize stress to achieve performance gain in both n-type MOSFETs (NMOS) and p-type MOSFETs (PMOS). The physics behind NMOS gain is better understood than that of PMOS gain, which has received less attention. In this letter, we describe the warping phenomena which is responsible for the gain seen in [110] uniaxially stressed PMOS devices on [100] orientated wafers. We also demonstrate that shear uniaxial stress in PMOS is better suited to MOSFET applications than biaxial stress as it is able to maintain gain at high vertical and lateral fields.


international electron devices meeting | 2004

Front end stress modeling for advanced logic technologies

S. Cea; Mark Armstrong; C. Auth; Tahir Ghani; Martin D. Giles; T. Hoffmann; Roza Kotlyar; P. Matagne; K. Mistry; R. Nagisetty; Borna Obradovic; R. Shaheed; Lucian Shifren; Mark Stettler; Sunit Tyagi; Xiaofei Wang; Cory E. Weber; K. Zawadzki

This paper presents an integrated approach to modeling front end stress which has been used to investigate the main sources of stress in advanced logic technologies and how they can be used to improve device performance. The approach is illustrated with the evaluation of several technologically important stress options.


symposium on vlsi technology | 2004

Understanding stress enhanced performance in Intel 90nm CMOS technology

Martin D. Giles; Mark Armstrong; C. Auth; S. Cea; Tahir Ghani; T. Hoffmann; Roza Kotlyar; P. Matagne; K. Mistry; Ramune Nagisetty; Borna Obradovic; R. Shaheed; Lucian Shifren; Mark Stettler; Sunit Tyagi; Xiaofei Wang; Cory E. Weber; K. Zawadzki

A hierarchical, model-based understanding of the key physical effects underlying stress-induced device performance gain is presented, focusing on the large gains seen for uniaxial PMOS stress conditions and the vertical stress impact on NMOS gain.

Collaboration


Dive into the Cory E. Weber's collaboration.

Researchain Logo
Decentralizing Knowledge