Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dalil Rahman is active.

Publication


Featured researches published by Dalil Rahman.


Advances in resist technology and processing. Conference | 2005

Effect of hard bake process on LER

Munirathna Padmanaban; David Rentkiewicz; SangHo Lee; Chisun Hong; Dongkwan Lee; Dalil Rahman; Raj Sakamuri; Ralph R. Dammel

Line-edge roughness (LER) continues to be one of the biggest challenges as the CD size shrinks down to sub 100 nm. It is shown that resist components as well as illumination conditions play a big role. Influence of resist components in both 248 and 193nm chemically amplified resist formulations has been reported but the root cause is not fully understood and may be platform or even specific formulation dependent. This paper attempts to tackle the issue from the processing side. Effects of a simple hard bake process on the LER were studied. In the hard bake process, a given resist pattern was typically baked close to the glass-transition temperature after the development process. LER improved dramatically due to melting down of the rough surface. However, the wall angle of the edge lines also started to degrade at the optimum hard bake temperature. Studies on the effects of polymer Tg, hard bake temperature and time and the issues of the process are discussed.


Proceedings of SPIE | 2013

New spin-on metal hardmask materials for lithography processes

Huirong Yao; Salem K. Mullen; Elizabeth Wolfer; Dalil Rahman; Clement Anyadiegwu; Douglas Mckenzie; Alberto D. Dioses; JoonYeon Cho; Munirathna Padmanaban

Since the critical dimensions in integrated circuit (IC) device fabrication continue to shrink below 32 nm, multilayer stacks with alternating etch selectivities are required for successful pattern transfer from the exposed photoresist to the substrate. Inorganic resist underlayer materials are used as hard masks in reactive ion etching (RIE) with oxidative gases. The conventional silicon hardmask has demonstrated good reflectivity control and reasonable etch selectivity. However, some issues such as the rework of trilayer stacks and cleaning of oxide residue by wet chemistry are challenging problems for manufacturability. The present work reveals novel spin-on underlayer materials containing significant amounts of metal oxides in the film after baking at normal processing conditions. Such an inorganic metal hardmask (MHM) has excellent etch selectivity in plasma etch processes of the trilayer stack. The composition has good long term shelf life and pot life stability based on solution LPC analysis and wafer defect studies, respectively. The material absorbs DUV wavelengths and can be used as a spin-on inorganic or hybrid antireflective coating to control substrate reflectivity under DUV exposure of photoresist. Some of these metal-containing materials can be used as an underlayer in EUV lithography to significantly enhance photospeed. Specific metal hard masks are also developed for via or trench filling applications in IRT processes. The materials have shown good coating and lithography performance with a film thicknesses as low as 10 nm under ArF dry or immersion conditions. In addition, the metal oxide films or residues can be partially or completely removed by using various wet-etching solutions at ambient temperature.


Proceedings of SPIE | 2008

Etching spin-on trilayer masks

David J. Abdallah; Shinji Miyazaki; Aritaka Hishida; Allen Timko; Douglas Mckenzie; Dalil Rahman; Woo-Kyu Kim; Lyudmila Pylneva; Hengpeng Wu; Ruzhi Zhang; Ping-Hung Lu; Mark Neisser; Ralph R. Dammel

Spin-on trilayer materials are increasingly being integrated in high density microfabrication that use high NA ArF lithography due to dwindling photoresist film thicknesses, lower integration cost and reduced complexity compared to analogous CVD stacks. To guide our development in spin-on trilayer materials we have established etch conditions on an ISM etcher for pattern transfer through trilayer hard masks. We report here a range of etch process variables and their impact on after-etch profiles and etch selectivity with AZ trilayer hard mask materials. Trilayer pattern transfer is demonstrated using 1st and 2nd minimum stacks with various pattern types. Etch recipes are then applied to blanket coated wafers to make comparisons between etch selectivities derived from patterned and blanket coated wafers.


Proceedings of SPIE | 2015

Progress in spin-on metal oxide hardmask materials for filling applications

Huirong Yao; Alberto D. Dioses; Salem K. Mullen; Elizabeth Wolfer; Douglas Mckenzie; Dalil Rahman; JoonYeon Cho; Munirathna Padmanaban; Claire Petermann; YoungJun Her; Yi Cao

It is well known that metal oxide films are useful as hard mask material in semiconductor industry for their excellent etch resistance against plasma etches. In the advanced lithography processes, in addition to good etch resistance, they also need to possess good wet removability, fill capability, in high aspect ratio contacts or trenches. Conventional metal containing materials can be applied by chemical vapor deposition (CVD) or atomic layer deposition (ALD). Films derived from these techniques have difficulty in controlling wet etch, have low throughput and need special equipment. This leads to high costs. Therefore it is desirable to develop simple spin-on coating materials to generate metal oxide hard masks that have good trench or via filling performances using spin track friendly processing conditions. In this report, novel spin-on type inorganic formulations providing Ti, W, Hf and Zr oxide hard masks will be described. The new materials have demonstrated high etch selectivity, good filling performances, wet removal capability, low trace metals and good shelf-life stability. These novel AZ® Spin-on metal hard mask formulations can be used in several new applications and can potentially replace any metal, metal oxide, metal nitride or silicon-containing hard mask films currently deposited using CVD process in the semiconductor manufacturing process.


Proceedings of SPIE | 2009

Reworkable Spin-on Trilayer Materials: Optimization of Rework Process and Solutions for Manufacturability

Ruzhi Zhang; Allen Timko; John Zook; Yayi Wei; Lyudmila Pylneva; Yi Yi; Chenghong Li; Hengpeng Wu; Dalil Rahman; Douglas Mckenzie; Clement Anyadiegwu; Ping-Hung Lu; Mark Neisser; Ralph R. Dammel; Ron Bradbury; Timothy Lee

Trilayer stacks with alternating etch selectivity were developed and extensively investigated for high NA immersion lithography at 32nm node and beyond. The conveyance of pattern transfer function from photoresist to Si-containing bottom anti-reflective coating (Si-BARC) and carbonrich underlayer hard-mask (UL) elegantly solved the small etch budget issue for ultra-thin photoresists in immersion lithography. However, due to the hybrid nature of Si-BARC, many different behaviors were observed in comparison to conventional BARC. Lithographic performance, stability, and reworkability were among the most challenging issues for trilayer scheme. Despite of the rapid improvement in lithographic performance and stability of trilayer materials reported by several papers, the rework and cleaning of trilayer materials by wet chemistry remained a challenging problem for manufacturability. The dual function requirement of reflection control and pattern transfer (i.e. hard-masking) for spin-on Si-BARC mandates hybrid materials. Si-BARC containing both organic moiety and inorganic backbone were extensively studied and demonstrated excellent performance. However, the hybrid nature of Si-BARC necessitates the revisit of different wet chemistries and process adjustment is essential to achieve desirable results. In addition, the similarity in chemical structures between Si-BARC and low-κ dielectrics demands subtle rework differentiation by wet chemistry from a chemistry point of view. In our development, we strived to identify rework solutions for trilayer materials in both front-end-of-line (FEOL) and back-end-of-line (BEOL) applications. Rework solutions including diluted HF, Piranha, and low-κ compatible strippers were extensively investigated. The optimization of solution mixture ratios and processing conditions was systematically studied. Thorough defect inspection after rework was performed to ensure the readiness for manufacturability. Extensive Piranha rework study on stack wafers and monitor wafers were carried out and excellent results are reported.


Proceedings of SPIE | 2007

Spin-on trilayer approaches to high NA 193nm lithography

David J. Abdallah; Douglas Mckenzie; Allen Timko; Alberto D. Dioses; Frank Houlihan; Dalil Rahman; Shinji Miyazaki; Ruzhi Zhang; Woo-Kyu Kim; Hengpeng Wu; Lyudmila Pylneva; Ping-Hung Lu; Mark Neisser; Ralph R. Dammel; John J. Biafore

New challenges face ArF bottom antireflection coatings (BARCs) with the implementation of high NA lithography and the concurrent increase use of spin-on hard masks. To achieve superior reflectivity control with high NA at least two semi-transparent ARC layers, with distinct optical indices, are necessary to effectively lower substrate reflectivity through a full range of incident angles. To achieve successful pattern transfer, these layers in conjunction with the organic resist, should be stacked with an alternating elemental composition to amplify vertical resolution during etch. This will circumvent the inherent low etch resistance of ArF resist and the decreasing film thicknesses that accompanies increasing NA. Thus, incorporating hard mask properties and antireflection properties in the same two layer system facilitates pattern transfer as a whole rather than just enhancing lithography. As with any material expected to exhibit multiple roles there is a delicate balance between optimizing materials with respect to one of its roles while not impairing its other roles. We will discuss some of these conflicts and present Si-BARCs and carbon rich underlayers which aim to balance these conflicts. In this paper we will explore simulations aimed at finding the best film thicknesses and optical indices, etch rate selectivity, and lithographic performance of high silicon content and high carbon content BARC materials designed to meet the demands of both high NA lithography and trilayer processing.


Proceedings of SPIE, the International Society for Optical Engineering | 2006

Study of the Effect of Amine Additives on LWR and LER

Francis M. Houlihan; David Rentkiewicz; Guanyang Lin; Dalil Rahman; Douglas Mackenzie; Allen Timko; Takanori Kudo; Clement Anyadiegwu; Muthiah Thiyagarajan; Simon Chiu; Andrew Romano; Ralph R. Dammel; Munirathna Padmanaban

We will give an account of our investigation on structure property relationships of amines with regards to line width roughness (LWR) and line edge roughness (LER) of a 193 nm alicyclic-acrylate resist. Specifically, we have looked at basicity, molar volume and logD as factors which may have an influence of roughness of 80 nm 1:1 L/S features. For relatively hydrophobic amines (Log D > -1), the lower the hydrophilicity at acidic pH the greater the LER and LWR becomes. Specifically, in this range of Log D, more hydrophobic larger amines, with higher basicity, tend to give worse L/S feature roughness. For amines which are more hydrophilic, the relationship becomes more complex with some amines giving a lower LER while others do not. This appears to be predicated on a delicate balance between basicity, hydrophilicy and size.


Proceedings of SPIE | 2017

Spin-on metal oxide materials for N7 and beyond patterning applications

Geert Mannaert; E. Altamirano-Sanchez; Toby Hopf; Farid Sebaai; Christophe Lorant; Claire Petermann; SungEun Hong; Salem K. Mullen; Elizabeth Wolfer; Douglas Mckenzie; Huirong Yao; Dalil Rahman; JoonYeon Cho; Munirathna Padmanaban; Daniele Piumi

There is a growing interest in new spin on metal oxide hard mask materials for advanced patterning solutions both in BEOL and FEOL processing. Understanding how these materials respond to plasma conditions may create a competitive advantage. In this study patterning development was done for two challenging FEOL applications where the traditional Si based films were replaced by EMD spin on metal oxides, which acted as highly selective hard masks. The biggest advantage of metal oxide hard masks for advanced patterning lays in the process window improvement at lower or similar cost compared to other existing solutions.


Proceedings of SPIE | 2016

Spin-on metal oxide materials with high etch selectivity and wet strippability

Huirong Yao; Salem K. Mullen; Elizabeth Wolfer; Douglas Mckenzie; Dalil Rahman; JoonYeon Cho; Munirathna Padmanaban; Claire Petermann; SungEun Hong; YoungJun Her

Metal oxide or metal nitride films are used as hard mask materials in semiconductor industry for patterning purposes due to their excellent etch resistances against the plasma etches. Chemical vapor deposition (CVD) or atomic layer deposition (ALD) techniques are usually used to deposit the metal containing materials on substrates or underlying films, which uses specialized equipment and can lead to high cost-of-ownership and low throughput. We have reported novel spin-on coatings that provide simple and cost effective method to generate metal oxide films possessing good etch selectivity and can be removed by chemical agents. In this paper, new spin-on Al oxide and Zr oxide hard mask formulations are reported. The new metal oxide formulations provide higher metal content compared to previously reported material of specific metal oxides under similar processing conditions. These metal oxide films demonstrate ultra-high etch selectivity and good pattern transfer capability. The cured films can be removed by various chemical agents such as developer, solvents or wet etchants/strippers commonly used in the fab environment. With high metal MHM material as an underlayer, the pattern transfer process is simplified by reducing the number of layers in the stack and the size of the nano structure is minimized by replacement of a thicker film ACL. Therefore, these novel AZ® spinon metal oxide hard mask materials can potentially be used to replace any CVD or ALD metal, metal oxide, metal nitride or spin-on silicon-containing hard mask films in 193 nm or EUV process.


Proceedings of SPIE, the International Society for Optical Engineering | 2008

Spin-on trilayer scheme: enabling materials for extension of ArF immersion lithography to 32nm node and beyond

Ruzhi Zhang; Allen Timko; Lyudmila Pylneva; Jennifer Loch; Hengpeng Wu; David J. Abdallah; Richard Collett; Yayi Wei; Dalil Rahman; Douglas Mckenzie; Ping-Hung Lu; Mark Neisser

Trilayer stacks with alternating etch selectivity were developed and extensively investigated for high NA immersion lithography at 32nm node and beyond. This paper discusses the fundamental aspects of the Si-containing BARC (Si-BARC) materials with ultra-high silicon content and carbon-rich underlayers that we developed. Designing of materials at a molecular level is presented. It was demonstrated that this fundamental understanding assisted in achieving satisfactory shelf life and excellent coating defect results. Prolith® simulations using trilayer stacks showed superior reflectivity control for hyper-NA immersion lithography. The impact of high incident angles on substrate reflectivity was analyzed and this paper demonstrated that trilayer scheme provides wider process windows and is more tolerant to topography than conventional single layer BARC. Extensive resist compatibility investigation was conducted and the root causes for poor lithography results were investigated. Excellent 45nm dense lines performance employing the spin-on trilayer stack on a 1.2 NA immersion scanner is reported. In addition, pattern transfers were successfully carried out and the Si-BARC with high silicon content demonstrated outstanding masking property. In comparison to the theoretical %Si values, better correlation with etch selectivity was observed with experimental %Si. Furthermore, this paper addresses the wet rework of trilayer materials and results using Piranha rework are presented. Clean 12in wafers were obtained after reworking trilayer stacks, as evidenced by defect analysis.

Collaboration


Dive into the Dalil Rahman's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Woo-Kyu Kim

AZ Electronic Materials

View shared research outputs
Top Co-Authors

Avatar

Allen Timko

AZ Electronic Materials

View shared research outputs
Top Co-Authors

Avatar

Ping-Hung Lu

AZ Electronic Materials

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hengpeng Wu

AZ Electronic Materials

View shared research outputs
Top Co-Authors

Avatar

Mark Neisser

AZ Electronic Materials

View shared research outputs
Researchain Logo
Decentralizing Knowledge