Hengpeng Wu
AZ Electronic Materials
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Hengpeng Wu.
Journal of Micro-nanolithography Mems and Moems | 2012
Paulina A. Rincon Delgadillo; Roel Gronheid; Christopher J. Thode; Hengpeng Wu; Yi Cao; Mark Neisser; Mark Somervell; Kathleen Nafus; Paul F. Nealey
Abstract. The implementation of our previously reported chemo-epitaxy method for directed self-assembly (DSA) of block copolymers (BCPs) on 300-mm wafers is described in detail. Some challenges to be addressed include edge bead removal control of the layers forming the exposure stack and uniformity of the deposited films across the wafer. With the fine tuning of the process conditions, this flow provides chemically nanopatterned substrates with well-defined geometry and chemistry. After a film of BCP is annealed on the chemical patterns, high degrees of perfection are achieved. A BCP with natural periodicity of 25 nm was assembled on100-nm pitch prepatterns, obtaining 4X feature multiplication. Top-down scanning electron microscope images show a wide process window with depth of focus >200 nm and exposure latitude >40% for lines and spaces of 12.5-nm half-pitch. We provide a platform for future study of the origin of DSA generated defects and their relationship to process conditions and materials that are amenable to use by the semiconductor industry.
Proceedings of SPIE | 2012
Paulina A. Rincon Delgadillo; Roel Gronheid; Christopher J. Thode; Hengpeng Wu; Yi Cao; Mark Somervell; Kathleen Nafus; Paul F. Nealey
Directed Self-Assembly (DSA) of block copolymers is considered to be a potential lithographic solution to achieve higher feature densities than can be obtained by current lithographic techniques. However, it is still not well-established how amenable DSA of block copolymers is to an industrial fabrication environment in terms of defectivity and processing conditions. Beyond production-related challenges, precise manipulation of the geometrical and chemical properties over the substrate is essential to achieve high pattern fidelity upon the self-assembly process. Using our chemo-epitaxy DSA approach offers control over the surface properties of the slightly preferential brush material as well as those of the guiding structures. This allows for a detailed assessment of the critical material parameters for defect reduction. The precise control of environment afforded by industrial equipment allows for the selective analysis of material and process related boundary conditions and assessment of their effect on defect generation. In this study, the previously reported implementation of our feature multiplication process was used to investigate the origin of defects in terms of the geometry of the initial pre-patterns. Additionally, programmed defects were used to investigate the ability of the BCP to heal defects in the resist patterns and will aid to assess the capture capability of the inspection tool. Finally, the set-up of the infrastructure that will allow the study the generation of defects due to the interaction of the BCP with the boundary conditions has been accomplished at imec.
Proceedings of SPIE | 2007
Francis M. Houlihan; Alberto D. Dioses; Medhat A. Toukhy; Andrew Romano; Joseph E. Oberlander; Hengpeng Wu; Salem K. Mullen; Alexandra Krawicz; Ping-Hung Lu; Mark Neisser
We will discuss our approach towards a second generation radiation sensitive developable bottom antireflective coating (DBARCs) for 193 nm. We will show imaging results (1:1 L/S features down to 140 nm) for some first generation implant resist material based upon a fluorinated resins and also show relative implant resistance of these first generation fluorinated resists towards As implantation (15 KeV at 5x1015 dose with 20 x 10-4 amp). Also, discussed will be a second generation of implant resists based on a non-fluorinated resins. Surprisingly, we found that the nonfluorinated materials gave better implant resistance (~2-3 X1011 atoms/cm2) despite the higher atomic number of fluorine compared to hydrogen in the fluorinated implant materials (~2-5X1012 atoms/cm2). Finally, we will give an update on the lithographic performance of this second generation of implant resists.
Proceedings of SPIE | 2007
Zhong Xiang; Hong Zhuang; Hengpeng Wu; Jianhui Shan; Dave Abdallah; Jian Yin; Salem K. Mullen; Huirong Yao; Eleazar Gonzalez; Mark Neisser
Substrate reflectivity control plays an important role in immersion lithography. Multilayer bottom anti-reflective coatings (B.A.R.C.s) become necessary. This paper will focus on the recent development in organic ArF B.A.R.C. for immersion lithography. Single layer low k ArF B.A.R.C.s in conjunction with multilayer CVD hard mask and dual layer organic ArF B.A.R.C. application will be discussed. High NA dry and wet lithography data will be presented. We will also present the etch rate data, defect data and out-gassing property of these new B.A.R.C. materials.
Proceedings of SPIE | 2014
Robert Seidel; Paulina Rincon Delgadillo; Abelardo Ramírez-Hernández; Hengpeng Wu; YoungJun Her; Jian Yin; Roel Gronheid; Paul F. Nealey; Juan J. de Pablo
Directed self-assembly (DDSA) of block copolymers ((BCP) is attracting a growing amount of interest as a techhnique to expand traditional lithography beyond its current limits. It has reecently been demonstrated that chemoepitaxy can be used to successfully ddirect BCP assembly to form large arrays off high-density features. The imec DSA LiNe flow uses lithography and trim-etch to produce a “prepattern” of cross-linked polystyrene (PS) stripes, which in turn guide the formation of assembled BCPP structures. Thhe entire process is predicated on the preferential interaction of the respective BCP domains with particular regionss of the underlying prepattern. The use of polystyrene as the guiding material is not uniquely required, however, and in fact may not even be preferable. This study investigates an alternate chemistry –– crosslinked poly(methyl methacrylate), X-PMMA, –– as the underlying polymer mat, providing a route to higher auto-affinity and therefore a stronger guiding ability. In addition to tthe advantages of the chemistry under investigation, this study explores the broader theme of extending BCP DSA to other materials.
Proceedings of SPIE | 2008
David J. Abdallah; Shinji Miyazaki; Aritaka Hishida; Allen Timko; Douglas Mckenzie; Dalil Rahman; Woo-Kyu Kim; Lyudmila Pylneva; Hengpeng Wu; Ruzhi Zhang; Ping-Hung Lu; Mark Neisser; Ralph R. Dammel
Spin-on trilayer materials are increasingly being integrated in high density microfabrication that use high NA ArF lithography due to dwindling photoresist film thicknesses, lower integration cost and reduced complexity compared to analogous CVD stacks. To guide our development in spin-on trilayer materials we have established etch conditions on an ISM etcher for pattern transfer through trilayer hard masks. We report here a range of etch process variables and their impact on after-etch profiles and etch selectivity with AZ trilayer hard mask materials. Trilayer pattern transfer is demonstrated using 1st and 2nd minimum stacks with various pattern types. Etch recipes are then applied to blanket coated wafers to make comparisons between etch selectivities derived from patterned and blanket coated wafers.
Proceedings of SPIE | 2015
Arjun Singh; Boon Teik Chan; Doni Parnell; Hengpeng Wu; Jian Yin; Yi Cao; Roel Gronheid
The patterning potential of block copolymer (BCP) materials via various directed self-assembly (DSA) schemes has been demonstrated for over a decade. We have previously reported the HONEYCOMB flow; a process flow where we utilize Extreme Ultraviolet Lithography and Oxygen plasma to guide the assembly of cylindrical phase BCPs into regular hexagonal arrays of contact holes [1, 2]. In this work we report the development of a new process flow, the CHIPS flow, where we use ArFi lithography to print guiding patterns for the chemo-epitaxial DSA of BCPs. Using this process flow we demonstrate BCP assembly into hexagonal arrays with sub-25 nm half-pitch and discuss critical steps of the process flow. Additionally, we discuss the influence of under-layer surface energy on the DSA process window and report contact hole metrology results.
Proceedings of SPIE | 2009
Ruzhi Zhang; Allen Timko; John Zook; Yayi Wei; Lyudmila Pylneva; Yi Yi; Chenghong Li; Hengpeng Wu; Dalil Rahman; Douglas Mckenzie; Clement Anyadiegwu; Ping-Hung Lu; Mark Neisser; Ralph R. Dammel; Ron Bradbury; Timothy Lee
Trilayer stacks with alternating etch selectivity were developed and extensively investigated for high NA immersion lithography at 32nm node and beyond. The conveyance of pattern transfer function from photoresist to Si-containing bottom anti-reflective coating (Si-BARC) and carbonrich underlayer hard-mask (UL) elegantly solved the small etch budget issue for ultra-thin photoresists in immersion lithography. However, due to the hybrid nature of Si-BARC, many different behaviors were observed in comparison to conventional BARC. Lithographic performance, stability, and reworkability were among the most challenging issues for trilayer scheme. Despite of the rapid improvement in lithographic performance and stability of trilayer materials reported by several papers, the rework and cleaning of trilayer materials by wet chemistry remained a challenging problem for manufacturability. The dual function requirement of reflection control and pattern transfer (i.e. hard-masking) for spin-on Si-BARC mandates hybrid materials. Si-BARC containing both organic moiety and inorganic backbone were extensively studied and demonstrated excellent performance. However, the hybrid nature of Si-BARC necessitates the revisit of different wet chemistries and process adjustment is essential to achieve desirable results. In addition, the similarity in chemical structures between Si-BARC and low-κ dielectrics demands subtle rework differentiation by wet chemistry from a chemistry point of view. In our development, we strived to identify rework solutions for trilayer materials in both front-end-of-line (FEOL) and back-end-of-line (BEOL) applications. Rework solutions including diluted HF, Piranha, and low-κ compatible strippers were extensively investigated. The optimization of solution mixture ratios and processing conditions was systematically studied. Thorough defect inspection after rework was performed to ensure the readiness for manufacturability. Extensive Piranha rework study on stack wafers and monitor wafers were carried out and excellent results are reported.
Proceedings of SPIE | 2007
David J. Abdallah; Douglas Mckenzie; Allen Timko; Alberto D. Dioses; Frank Houlihan; Dalil Rahman; Shinji Miyazaki; Ruzhi Zhang; Woo-Kyu Kim; Hengpeng Wu; Lyudmila Pylneva; Ping-Hung Lu; Mark Neisser; Ralph R. Dammel; John J. Biafore
New challenges face ArF bottom antireflection coatings (BARCs) with the implementation of high NA lithography and the concurrent increase use of spin-on hard masks. To achieve superior reflectivity control with high NA at least two semi-transparent ARC layers, with distinct optical indices, are necessary to effectively lower substrate reflectivity through a full range of incident angles. To achieve successful pattern transfer, these layers in conjunction with the organic resist, should be stacked with an alternating elemental composition to amplify vertical resolution during etch. This will circumvent the inherent low etch resistance of ArF resist and the decreasing film thicknesses that accompanies increasing NA. Thus, incorporating hard mask properties and antireflection properties in the same two layer system facilitates pattern transfer as a whole rather than just enhancing lithography. As with any material expected to exhibit multiple roles there is a delicate balance between optimizing materials with respect to one of its roles while not impairing its other roles. We will discuss some of these conflicts and present Si-BARCs and carbon rich underlayers which aim to balance these conflicts. In this paper we will explore simulations aimed at finding the best film thicknesses and optical indices, etch rate selectivity, and lithographic performance of high silicon content and high carbon content BARC materials designed to meet the demands of both high NA lithography and trilayer processing.
Proceedings of SPIE | 2015
Jihoon Kim; Jian Yin; Yi Cao; YoungJun Her; Claire Petermann; Hengpeng Wu; Jianhui Shan; Tomohiko Tsutsumi; Guanyang Lin
Significant progresses on 300 mm wafer level DSA (Directed Self-Assembly) performance stability and pattern quality were demonstrated in recent years. DSA technology is now widely regarded as a leading complementary patterning technique for future node integrated circuit (IC) device manufacturing. We first published SMARTTM DSA flow in 2012. In 2013, we demonstrated that SMARTTM DSA pattern quality is comparable to that generated using traditional multiple patterning technique for pattern uniformity on a 300 mm wafer. In addition, we also demonstrated that less than 1.5 nm/3σ LER (line edge roughness) for 16 nm half pitch DSA line/space pattern is achievable through SMARTTM DSA process. In this publication, we will report impacts on SMARTTM DSA performances of key pre-pattern features and processing conditions. 300mm wafer performance process window, CD uniformity and pattern LER/LWR after etching transfer into carbon-hard mask will be discussed as well.