Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Daniël Schinkel is active.

Publication


Featured researches published by Daniël Schinkel.


international solid-state circuits conference | 2007

A Double-Tail Latch-Type Voltage Sense Amplifier with 18ps Setup+Hold Time

Daniël Schinkel; Eisse Mensink; E. Kiumperink; E. van Tuijl; Bram Nauta

A latch-type voltage sense amplifier in 90nm CMOS is designed with a separated input and cross-coupled stage. This separation enables fast operation over a wide common-mode and supply voltage range. With a 1-sigma offset of 8mV, the circuit consumes 92fJ/decision with a 1.2V supply. It has an input equivalent noise of 1.5mV and requires 18ps setup-plus-hold time


IEEE Journal of Solid-state Circuits | 2010

A 10-bit Charge-Redistribution ADC Consuming 1.9

Michiel van Elzakker; Ed van Tuijl; Paul F. J. Geraedts; Daniël Schinkel; Eric A.M. Klumperink; Bram Nauta

This paper presents a 10 bit successive approximation ADC in 65 nm CMOS that benefits from technology scaling. It meets extremely low power requirements by using a charge-redistribution DAC that uses step-wise charging, a dynamic two-stage comparator and a delay-line-based controller. The ADC requires no external reference current and uses only one external supply voltage of 1.0 V to 1.3 V. Its supply current is proportional to the sample rate (only dynamic power consumption). The ADC uses a chip area of approximately 115×225 μm2. At a sample rate of 1 MS/s and a supply voltage of 1.0 V, the 10 bit ADC consumes 1.9 μW and achieves an energy efficiency of 4.4 fJ/conversion-step.


international solid-state circuits conference | 2008

\mu

van Michel Elzakker; van Ed Tuijl; Paul F. J. Geraedts; Daniël Schinkel; Eric A.M. Klumperink; Bram Nauta

An ADC for energy scavenging is proposed using a charge-redistribution DAC, a dynamic 2-stage comparator, and a delay-line-based controller realized in CMOS. The charge-redistribution DAC can be used in a simple way to make a SAR ADC. The 10b differential ADC uses bootstrapped NMOS devices to sample the differential input voltage onto two identical charge-redistribution DACs. The test chip is fabricated in a 65nm CMOS process. In this ADC, the MSB is set in between the sampling phase and the first comparison, saving energy and time.


IEEE Journal of Solid-state Circuits | 2006

W at 1 MS/s

Daniël Schinkel; Eisse Mensink; Eric A.M. Klumperink; van Ed Tuijl; Bram Nauta

Global on-chip data communication is becoming a concern as the gap between transistor speed and interconnect bandwidth increases with CMOS process scaling. Repeaters can partly bridge this gap, but the classical repeater insertion approach requires a large number of repeaters while the intrinsic data capacity of each interconnect-segment is only partially used. In this paper we analyze interconnects and show how a combination of layout, termination and equalization techniques can significantly increase the data rate for a given length of uninterrupted interconnect. To validate these techniques, a bus-transceiver test chip in a 0.13-/spl mu/m, 1.2-V, 6-M copper CMOS process has been designed. The chip uses 10-mm-long differential interconnects with wire widths and spacing of only 0.4 /spl mu/m. Differential interconnects are insensitive to common-mode disturbances (e.g., non-neighbor crosstalk) and enable the use of twists to mitigate neighbor-to-neighbor crosstalk. With transceivers operating in conventional mode, the chip achieves only 0.55 Gb/s/ch. The achievable data rate increases to 3 Gb/s/ch (consuming 2 pJ/bit) with a pulse-width pre-emphasis technique, used in combination with resistive termination.


IEEE Transactions on Very Large Scale Integration Systems | 2009

A 1.9μW 4.4fJ/Conversion-step 10b 1MS/s Charge-Redistribution ADC

Daniël Schinkel; Eisse Mensink; Eric A.M. Klumperink; A.J.M. van Tuijl; Bram Nauta

Networks on chips (NoCs) are becoming popular as they provide a solution for the interconnection problems on large integrated circuits (ICs). But even in a NoC, link-power can become unacceptably high and data rates are limited when conventional data transceivers are used. In this paper, we present a low-power, high-speed source-synchronous link transceiver which enables a factor 3.3 reduction in link power together with an 80% increase in data-rate. A low-swing capacitive pre-emphasis transmitter in combination with a double-tail sense-amplifier enable speeds in excess of 9 Gb/s over a 2 mm twisted differential interconnect, while consuming only 130 fJ/transition without the need for an additional supply. Multiple transceivers can be connected back-to-back to create a source-synchronous transceiver-chain with a wave-pipelined clock, operating with 6sigma offset reliability at 5 Gb/s.


IEEE Journal of Solid-state Circuits | 2010

A 3-Gb/s/ch transceiver for 10-mm uninterrupted RC-limited global on-chip interconnects

Eisse Mensink; Daniël Schinkel; Eric A.M. Klumperink; van Ed Tuijl; Bram Nauta

This paper presents a set of circuit techniques to achieve high data rate point-to-point communication over long on-chip RC-limited wire-pairs. The ideal line termination impedances for a flat transfer function with linear phase (pure delay) are derived, using an s-parameter wire-pair model. It is shown that a driver with series capacitance on the one hand and a resistive load on the other, are fair approximations of these ideal terminations in the frequency range of interest. From a perspective of power efficiency, a capacitive driver is preferred, as the series capacitance reduces the voltage swing along the line which reduces dynamic power consumption. To reduce cross-talk and maintain data integrity, parallel differential interconnects with alternatingly one or two twists are used. In combination with a low offset dynamic sense amplifier at the receiver, and a low-power decision feedback equalization technique with analog feedback, gigabit communication is demonstrated at very low power consumption. A point-to-point link on a 90 nm CMOS test chip achieves 2 Gb/s over 10 mm long interconnects, while consuming 0.28 pJ/bit corresponding to 28 fJ/bit/mm, which is much lower than competing designs.


IEEE Transactions on Very Large Scale Integration Systems | 2007

Low-Power, High-Speed Transceivers for Network-on-Chip Communication

Eisse Mensink; Daniël Schinkel; Eric A.M. Klumperink; van Ed Tuijl; Bram Nauta

Crosstalk limits the achievable data rate of global on-chip interconnects on large CMOS ICs. This is especially the case, if low-swing signaling is used to reduce power consumption. Differential interconnects provide a solution for most crosstalk and noise sources, but not for neighbor-to-neighbor crosstalk in a data bus. This neighbor-to-neighbor crosstalk can be reduced with twists in the differential interconnect pairs. To reduce via resistance and metal layer use, we use as few twists as possible by placing only one twist in every even interconnect pair and only two twists in every odd interconnect pair. Analysis shows that there are optimal positions for the twists, which depend on the termination impedances of the interconnects. Theory and measurements on a 10-mm-long bus in 0.13-mum CMOS show that only one twist at 50% of the even interconnect pairs, two twists at 30% and 70% of the odd interconnect pairs, and both a low-ohmic source and a low-ohmic load impedance are very effective in mitigating the crosstalk


european solid-state circuits conference | 2005

Power Efficient Gigabit Communication Over Capacitively Driven RC-Limited On-Chip Interconnects

T.S. Doorn; Ev. Tuijl; Daniël Schinkel; Anne-Johan Annema; Marco Berkhout; Bram Nauta

A 322 coefficient semi-digital FIR-DAC using a 1-bit PWM input signal was designed and implemented in a high voltage, audio power bipolar CMOS DMOS (BCD) process. This facilitates digital input signals for an analog class-D amplifier in BCD. The FIR-DAC performance depends on the ISI-resistant nature of this PWM-signal. An impulse response with only positive coefficients was chosen, because of its resistance to deadzone and mismatch. With a DAC current of 0.5 mA, the dynamic range is 111 dB (A-weighted), with SINAD = 103 dB (A-weighted). The current consumption is 1mA for the analog part and 4.8 mA for the digital part. The power consumption is 29 mW at V/sub dd/ = 5 V and the chip area is 2 mm/sup 2/ including the reference diode that can be shared by more channels.


international solid-state circuits conference | 2015

Optimal Positions of Twists in Global On-Chip Differential Interconnects

Hugo Westerveld; Daniël Schinkel; Ed van Tuijl

Out-of-band noise (OBN) is troublesome in analog circuits that process the output of a noise-shaping audio DAC. It causes slewing in amplifiers and aliasing in sampling circuits like ADCs and class-D amplifiers. Nonlinearity in these circuits also causes cross-modulation of the OBN into the audio band. These mechanisms lead to a higher noise level and more distortion in the audio band. OBN also leads to interference in the LF and MF band, compromising e.g. AM radio reception. To avoid these problems, it is desired to reduce OBN power to below -60dBFS. An active low-pass filter after the DAC output can reduce the OBN power to acceptable levels, but this solution is expensive in terms of power consumption and chip area. A FIR-DAC approach implements a 1b PWM modulator, followed by a semi-digital low-pass FIR reconstruction filter. It achieves high-end audio performance with sufficiently low OBN, but the FIR structure costs area, adds latency, and (like an analog low-pass filter) inherently limits the maximum output signal frequency. Multi-bit noise shapers employ smaller quantization steps and therefore output lower OBN. A cascaded-modulator architecture can directly be followed by an on-chip amplifier without low-pass filtering. However, with only 330 quantization levels, it still cannot achieve the desired -60dBFS OBN without additional filtering. Moreover, this approach requires complex dynamic-element matching (DEM) and inter-symbol interference (ISI) shaping mechanisms. The paper present an approach that reduces OBN to below -60dBFS with minimal increase in power and area consumption. It consists of two paths . The main path is based on the work of van Tuijl et al. (2004), containing a 128× oversampled 5b 3rd-order noise shaper, thermometer decoder and real-time DEM algorithm followed by a current DAC. Since the digital noise shaper generates negligible in-band noise products, the error signal of the noise shaper is practically equal to the OBN. This error signal is integrated (as part of the loop filter), quantized and fed to a correction path with a differentiating DAC (DIFF-DAC). This DAC inverts the integration action, obtaining unity signal transfer. The output currents of both paths are subtracted, reducing OBN significantly. Quantization noise of the correction path is shaped because the error signal is differentiated after quantization. Depending on the shape of the noise transfer function of the main DAC, the DIFF-DAC needs an over-range in order to accommodate the increased signal swing caused by the integration action. Still, area and power cost is minimal because the range of the DIFF-DAC is still only a fraction of the main DAC range.


Archive | 2011

An audio FIR-DAC in a BCD process for high power class-D amplifiers

Daniël Schinkel

On-chip data communication is an active research area, as interconnects are rapidly becoming a speed, power and reliability bottleneck for digital CMOS systems. Especially for global interconnects that have to span large parts of a chip, there is an increasing gap between transistor speed and interconnect bandwidth. To alleviate this problem, improvements in technology, architectures and circuits are needed. On the technology side, low-k dielectrics and reverse scaling can improve the interconnect behavior. On the architecture side, Network on chips (NoCs) can reduce the number of global interconnects. On the circuit side, which is the focus area of this thesis, more advanced strategies than the classical repeater insertion can be used to reduce the power consumption and increase the communication speed. In the thesis, it is shown that the bandwidth of interconnects is either limited by their distributed RC behavior (for long interconnects), or by the skin-effect. In both cases, the bandwidth is proportional to the cross-sectional area and inversely proportional to the length squared. The aggregate bandwidth per cross-sectional area can be optimized by choosing all cross-sectional dimensions roughly equal. The bandwidth of a single interconnect can be increased by using resistive (or resistive-inductive) receiver termination or capacitive transmitter termination. The crosstalk can be mitigated with twisted differential interconnects, where the number of twists determines for how many neighbors the crosstalk can be cancelled. With the aid of a symbol response analysis method, it is shown that simple equalization schemes are very effective to boost the achievable data rate, more so than multi-level signaling or band-pass modulation. To validate the concepts two demonstrator ICs were developed, both using 10mm long interconnects. The first chip, in a 130nm CMOS process, showed that a combination of pulse-width pre-emphasis, twisted interconnects and low-ohmic receiver termination can boost the data rate to 3Gb/s/ch (at 2pJ/bit), while a conventional transceiver reached only 0.55Gb/s/ch. The second test-chip, in 90nm CMOS, showed that a combination of a capacitive transmitter and a low-power sense-amplifier with DFE at the receiver can reduce the energy consumption to 0.28pJ/bit (at 2Gb/s), much lower than competing designs. Circuit simulations show that a capacitive transmitter and a low-power sense amplifier can also be very effective as transceivers in a NoC, with data rates in excess of 9Gb/s (at 130fJ/transition) over 2mm interconnects. Multiple transceivers can be connected back-toback to create a source-synchronous transceiver-chain with a wave-pipelined clock, operating with 6σ offset reliability at 5 Gb/s

Collaboration


Dive into the Daniël Schinkel's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge