Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Edris M. Mohammed is active.

Publication


Featured researches published by Edris M. Mohammed.


international solid-state circuits conference | 2009

Optical I/O technology for tera-scale computing

Ian A. Young; Edris M. Mohammed; Jason T. S. Liao; Alexandra M. Kern; Samuel Palermo; Bruce A. Block; Miriam R. Reshotko; Peter L. D. Chang

This paper describes both a near term and a long term optical interconnect solution, the first based on a packaging architecture and the second based on a monolithic photonic CMOS architecture. The packaging-based optical I/O architecture implemented with 90 nm CMOS transceiver circuits, 1 × 12 VCSEL/detector arrays and polymer waveguides achieves 10 Gb/s/channel at 11 pJ/b. A simple TX pre-emphasis technique enables a potential 18 Gb/s at 9.6 pJ/b link efficiency. Analysis predicts this architecture to reach less than 1 pJ/b at the 16 nm CMOS technology node. A photonic CMOS process enables higher bandwidth and lower energy-per-bit for chip-to-chip optical I/O through integration of electro-optical polymer based modulators, silicon nitride waveguides and polycrystalline germanium (Ge) detectors into a CMOS logic process. Experimental results for the photonic CMOS ring resonator modulators and Ge detectors demonstrate performance above 20 Gb/s and analysis predicts that photonic CMOS will eventually enable energy efficiency better than 0.3 pJ/b with 16 nm CMOS. Optical interconnect technologies such as these using multi-lane communication or wavelength division multiplexing have the potential to achieve TB/s interconnect and enable platforms suitable for the tera-scale computing era.


IEEE Communications Magazine | 2010

Optical technology for energy efficient I/O in high performance computing

Ian A. Young; Edris M. Mohammed; Jason T. S. Liao; Alexandra M. Kern; Samuel Palermo; Bruce A. Block; Miriam R. Reshotko; Peter L. D. Chang

Future high-performance computing systems will require optical I/O to achieve their aggressive bandwidth requirements of multiple terabytes per second with energy efficiency better than 1 pJ/b. Near-term optical I/O solutions will integrate optical and electrical components in the package, but longer-term solutions will integrate photonic elements directly into the CMOS chip to further improve bandwidth and energy efficiency. The presented near-term optical I/O uses a customized package to assemble CMOS integrated transceiver circuits, discrete VCSEL/detector arrays, and polymer waveguides. Circuit simulations predict this architecture will achieve energy efficiency better than 1 pJ/b at the 16 nm CMOS technology node. Monolithic photonic CMOS process technology enables higher bandwidth and improved energy efficiency for chip-to-chip optical I/O through integration of electro-optical polymer based modulators, silicon nitride waveguides, and polycrystalline germanium (Ge) detectors into a CMOS logic process. Experimental results for the photonic CMOS ring resonator (RR) modulators and Ge detectors demonstrate performance at up to 40 Gb/s and analysis predicts that photonic CMOS will eventually enable energy efficiency of 0.3 pJ/b with 16 nm CMOS. Optical interconnect technologies with multilane communication or wavelength-division multiplexing will further increase bandwidth to provide the multiple-terabyte-per-second optical interconnect solution that enables scaling of high-performance computing into and beyond the tera-scale era.


Photonics packaging and integration. Conference | 2004

Optical I/O technology for digital VLSI

Edris M. Mohammed; Thomas P. Thomas; Daoqiang Lu; Henning Braunisch; Steven Towle; Brandon C. Barnett; Ian A. Young; Gilroy Vandentop

We describe the development of a high-speed, 12-channel (8-data, 2-clock and 2-alignment channels), parallel optical link with a unique packaging concept. The package is used to demonstrate the viability of chip-to-chip optical I/O in very large scale integration (VLSI) circuits. However, for implementation of optical systems in high performance computing applications, the cost of components and packaging has to come down significantly from the traditional optical communication distances. In the current work we attempted to realize such a system by using power efficient optical and electronic components together with a potentially low cost packaging solution compatible with the electronics industry. Vertical Cavity Surface Emitting Lasers (VCSEL), positive-intrinsic-negative (PIN) photodetectors, polymer waveguide arrays as well as CMOS transceiver chip were heterogeneously integrated on a standard microprocessor flip-chip pin grid array (FCPGA) substrate. The CMOS transceiver chip from 0.18μm processing technology contains VCSEL drivers, transimpedance and limiting amplifiers and on-chip self-testing circuits. A self-test circuit in such high-speed systems will be highly beneficial to reduce the testing cost in real products. For fully assembled packages we measured a 3 Gb/s optical eye for the transmitter (24Gb/s aggregate data rate) and a transmission over the complete link was achieved at 1 Gb/s (8Gb/s aggregate data rate).


Proceedings of SPIE, the International Society for Optical Engineering | 2008

Optical hybrid package with an 8-channel 18GT/s CMOS transceiver for chip-to-chip optical interconnect

Edris M. Mohammed; Jason T. S. Liao; Alexandra M. Kern; Daoqiang Lu; Henning Braunisch; Thomas P. Thomas; S. Hyvonen; Samuel Palermo; Ian A. Young

We describe the design and development of a high-speed 8-channel hybrid integrated optical transceiver package with Clock and Data Recovery (CDR) circuits. The package concept has been developed to be compatible with microprocessor package technology and at the same time allow the integration of low cost, high-performance optical components. A 90nm CMOS optical transceiver chip, 850nm 10Gb/s GaAs based vertical cavity surface emitting laser (VCSEL) array and PIN photodiode array are flip-chip mounted on a standard microprocessor Land Grid Array (LGA) package substrate. The CMOS drivers and receivers on the transceiver chip and the optical components (VCSEL and Photodiode arrays) are electrically coupled using a short transmission line routed on the top surface of the package. VCSEL and photodiode arrays are optically coupled to on-package integrated polymer waveguide arrays with metallized 45° mirrors. The waveguides, which are terminated with multi-terminal (MT) fiber optic connectors, couple out/in high-speed optical signals to/from the chip. The CMOS transceiver chip fully integrates all analog optical circuits such as VCSEL drivers, transimpedance amplifiers and clock and data recovery (CDR) retiming circuit with a low jitter LC-PLL. Digital circuits for pseudorandom bit-pattern sequence generators (PRBS) and bit-error rate test (BERT) are fully integrated. 20Gb/s electrical and 18Gb/s optical eye diagrams for the transmitter were measured out of the package. A fully packaged transmitter and receiver including clock data recovery at 10Gb/s have also been measured.


Proceedings of SPIE, the International Society for Optical Engineering | 2010

200Gb/s 10-channel miniature optical interconnect transmitter module for high-performance computing (HPC)

Edris M. Mohammed; Hinmeng Au

A major breakthrough to alleviating the interconnect bottleneck in intra cabinet system in HPC may happen by bringing optics directly to the processor package. In order to do so efficient and compact optical interconnect subassembly modules that utilize simple optical and electrical interfacing schemes are needed. In our current work the development of a novel 10-channel, miniature 7mm(W)x1.8mm(L)x3mm(H), optical interconnect transmitter subassembly module is described. The module consists of a high precision molded optical alignment unit with integrated microlens arrays, highspeed coplanar waveguide (CPW) electrical interfaces and a VCSEL (Vertical Cavity Surface Emitting Laser) array chip which is flip chip mounted. The module is designed to uniquely interface vertically with high-speed electrical I/O lines on a microprocessor style package or a motherboard to convert electrical signals to optical for transmission to other similar units using a standard (Multi-Terminal) MT style optical connector. We report on optical coupling efficiency, misalignment tolerance and high-speed electrical and optical measurements of the module. We have measured 40Gb/s electrical eye for the CPW interfaces on the module and 20Gb/s clear optical eyes for VCSEL assembled module from all the 10 channels to produce an aggregate transmitter bandwidth of 200Gb/s. We also measured 30Gb/s electrical and 20Gb/s optical eyes for the optical subassembly module that is bonded onto a microprocessor style package substrate.


Archive | 2004

On-Chip Optical Interconnects

Mauro J. Kobrinsky; Bruce A. Block; J. F. Zheng; Brandon C. Barnett; Edris M. Mohammed; Miriam R. Reshotko; F. Robertson; S. List; Ian Young; Kenneth C. Cadien


Archive | 2005

Surface mount (smt) connector for vcsel and photodiode arrays

Edris M. Mohammed


Archive | 2005

Passively aligned optical-electrical interface

Daoqiang Lu; Henning Braunisch; Edris M. Mohammed; Ian Young


Archive | 2012

Optical photonic circuit coupling

Edris M. Mohammed; Peter L. D. Chang; Ibrahim Ban


Archive | 2006

Electroabsorption vertical cavity surface emitting laser modulator and/or detector

Edris M. Mohammed; Ian Young; Serge Oktyabrsky; Michael Yakimov

Collaboration


Dive into the Edris M. Mohammed's collaboration.

Researchain Logo
Decentralizing Knowledge