Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Glenn A. Glass is active.

Publication


Featured researches published by Glenn A. Glass.


international electron devices meeting | 2003

A 90nm high volume manufacturing logic technology featuring novel 45nm gate length strained silicon CMOS transistors

Tahir Ghani; Mark Armstrong; C. Auth; M. Bost; P. Charvat; Glenn A. Glass; T. Hoffmann; K. Johnson; C. Kenyon; Jason Klaus; B. McIntyre; K. Mistry; Anand S. Murthy; J. Sandford; M. Silberstein; Sam Sivakumar; P. Smith; K. Zawadzki; S. Thompson; Mark Bohr

This paper describes the details of a novel strained transistor architecture which is incorporated into a 90nm logic technology on 300mm wafers. The unique strained PMOS transistor structure features an epitaxially grown strained SiGe film embedded in the source drain regions. Dramatic performance enhancement relative to unstrained devices are reported. These transistors have gate length of 45nm and 50nm for NMOS and PMOS respectively, 1.2nm physical gate oxide and Ni salicide. World record PMOS drive currents of 700/spl mu/A//spl mu/m (high V/sub T/) and 800/spl mu/A//spl mu/m (low V/sub T/) at 1.2V are demonstrated. NMOS devices exercise a highly tensile silicon nitride capping layer to induce tensile strain in the NMOS channel region. High NMOS drive currents of 1.26mA//spl mu/m (high VT) and 1.45mA//spl mu/m (low VT) at 1.2V are reported. The technology is mature and is being ramped into high volume manufacturing to fabricate next generation Pentium/spl reg/ and Intel/spl reg/ Centrino/spl trade/ processor families.


IEEE Transactions on Electron Devices | 2004

A 90-nm logic technology featuring strained-silicon

Scott E. Thompson; Mark Armstrong; C. Auth; Mohsen Alavi; Mark Buehler; Robert S. Chau; S. Cea; Tahir Ghani; Glenn A. Glass; Thomas Hoffman; Chia-Hong Jan; Chis Kenyon; Jason Klaus; Kelly Kuhn; Zhiyong Ma; Brian McIntyre; K. Mistry; Anand S. Murthy; Borna Obradovic; Ramune Nagisetty; Phi L. Nguyen; Sam Sivakumar; R. Shaheed; Lucian Shifren; Bruce Tufts; Sunit Tyagi; Mark Bohr; Youssef A. El-Mansy

A leading-edge 90-nm technology with 1.2-nm physical gate oxide, 45-nm gate length, strained silicon, NiSi, seven layers of Cu interconnects, and low-/spl kappa/ CDO for high-performance dense logic is presented. Strained silicon is used to increase saturated n-type and p-type metal-oxide-semiconductor field-effect transistors (MOSFETs) drive currents by 10% and 25%, respectively. Using selective epitaxial Si/sub 1-x/Ge/sub x/ in the source and drain regions, longitudinal uniaxial compressive stress is introduced into the p-type MOSEFT to increase hole mobility by >50%. A tensile silicon nitride-capping layer is used to introduce tensile strain into the n-type MOSFET and enhance electron mobility by 20%. Unlike all past strained-Si work, the hole mobility enhancement in this paper is present at large vertical electric fields in nanoscale transistors making this strain technique useful for advanced logic technologies. Furthermore, using piezoresistance coefficients it is shown that significantly less strain (/spl sim/5 /spl times/) is needed for a given PMOS mobility enhancement when applied via longitudinal uniaxial compression versus in-plane biaxial tension using the conventional Si/sub 1-x/Ge/sub x/ substrate approach.


IEEE Electron Device Letters | 2004

A logic nanotechnology featuring strained-silicon

Scott E. Thompson; Mark Armstrong; C. Auth; S. Cea; Robert S. Chau; Glenn A. Glass; Thomas Hoffman; Jason Klaus; Zhiyong Ma; Brian McIntyre; Anand S. Murthy; Borna Obradovic; Lucian Shifren; Sam Sivakumar; Sunit Tyagi; Tahir Ghani; K. Mistry; Mark Bohr; Youssef A. El-Mansy

Strained-silicon (Si) is incorporated into a leading edge 90-nm logic technology . Strained-Si increases saturated n-type and p-type metal-oxide-semiconductor field-effect transistors (MOSFETs) drive currents by 10 and 25%, respectively. The process flow consists of selective epitaxial Si/sub 1-x/Ge/sub x/ in the source/drain regions to create longitudinal uniaxial compressive strain in the p-type MOSFET. A tensile Si nitride-capping layer is used to introduce tensile uniaxial strain into the n-type MOSFET and enhance electron mobility. Unlike past strained-Si work: 1) the amount of strain for the n-type and p-type MOSFET can be controlled independently on the same wafer and 2) the hole mobility enhancement in this letter is present at large vertical electric fields, thus, making this flow useful for nanoscale transistors in advanced logic technologies.


Archive | 2006

Method for forming an integrated circuit

Anand S. Murthy; Glenn A. Glass; Andrew N. Westmeyer; Michael L. Hattendorf; Tahir Ghani


Archive | 2006

CMOS transistor junction regions formed by a CVD etching and deposition sequence

Anand S. Murthy; Glenn A. Glass; Andrew N. Westmeyer; Michael L. Hattendorf; Jeffrey R. Wank


Archive | 2003

Method for improving transistor performance through reducing the salicide interface resistance

Anand S. Murthy; Boyan Boyanov; Glenn A. Glass; Thomas Hoffmann


Archive | 2012

Contact resistance reduced p-mos transistors employing ge-rich contact layer

Glenn A. Glass; Anand S. Murthy


Archive | 2011

Transistors with high concentration of boron doped germanium

Anand S. Murthy; Glenn A. Glass; Tahir Ghani; Ravi Pillarisetty; Niloy Mukherjee; Jack T. Kavalieros; Roza Kotlyar; Mark Y. Liu


Archive | 2015

Nanowire transistor devices and forming techniques

Glenn A. Glass; Kelin J. Kuhn; Seiyon Kim; Anand S. Murthy; Daniel B. Aubertine


Archive | 2014

High mobility strained channels for fin-based transistors

Stephen M. Cea; Anand S. Murthy; Glenn A. Glass; Daniel B. Aubertine; Tahir Ghani; Jack T. Kavalieros; Roza Kotlyar

Collaboration


Dive into the Glenn A. Glass's collaboration.

Researchain Logo
Decentralizing Knowledge