Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Greg C. Baldwin is active.

Publication


Featured researches published by Greg C. Baldwin.


international solid-state circuits conference | 2008

A 45nm 3.5G Baseband-and-Multimedia Application Processor using Adaptive Body-Bias and Ultra-Low-Power Techniques

Gordon Gammie; Alice Wang; Minh Chau; Sumanth Gururajarao; Robert Pitts; Fabien Jumel; Stacey Engel; Philippe Royannez; Rolf Lagerquist; Hugh Mair; Jeff Vaccani; Greg C. Baldwin; Keerthi Heragu; Rituparna Mandal; Michael Patrick Clinton; Don Arden; Uming Ko

System on Chip (SoC) integration is the theme of the first integrated 3.5G baseband and multimedia applications processor fabricated using a low-power digital and analog design platform and 45nm process technology. This SoC supports mobile standards: HSUPA/HSDPA, WCDMA, EDGE/GPRS/GSM and applications such as MPEG-4 video streaming, Java and MP3 audio. The high- performance multimedia, multiprocessor engine includes an 840MHz ARM1176, a 480MHz TMS320C55x DSP, and a 240MHz image processor.


international solid-state circuits conference | 2011

A 28 nm 0.6 V Low Power DSP for Mobile Applications

Gordon Gammie; Nathan Ickes; Mahmut E. Sinangil; Rahul Rithe; Jie Gu; Alice Wang; Hugh Mair; Satyendra Datla; Bing Rong; Sushma Honnavara-Prasad; Lam Ho; Greg C. Baldwin; Dennis Buss; Anantha P. Chandrakasan; Uming Ko

Processors for next generation mobile devices will need to operate across a wide supply voltage range in order to support both high performance and high power efficiency modes of operation. However, the effects of local transistor threshold (VT) variation, already a significant issue in todays advanced process technologies, and further exacerbated at low voltages, complicate the task of designing reliable, manufacturable systems for ultra-low voltage operation. In this paper, we describe a 4-issue VLIW DSP system-on-chip (SoC), which operates at voltages from 1.0 V down to 0.6 V. The SoC was implemented in 28 nm CMOS, using a cell library and SRAMs optimized for both high-speed and low-voltage operating points. A new statistical static timing analysis (SSTA) methodology was also used on this design, in order to more accurately model the effects of local VT variation and achieve a reliable design with minimal pessimism.


IEEE Transactions on Electron Devices | 2010

Layout Variation Effects in Advanced MOSFETs: STI-Induced Embedded SiGe Strain Relaxation and Dual-Stress-Liner Boundary Proximity Effect

Youn Sung Choi; Guoda Lian; C Vartuli; Oluwamuyiwa Oluwagbemiga Olubuyide; Jayhoon Chung; Deborah J. Riley; Greg C. Baldwin

This paper reports two areas of focus for layout variation effects in advanced strained-Si technology: 1) shallow-trench isolation (STI)-induced embedded SiGe (eSiGe) strain relaxation and 2) impact of dual-stress-liner (DSL) boundary on channel mobility. A complete data analysis, including two different strain measurement techniques of nanobeam diffraction and geometric phase analysis, is presented, along with a quantitative understanding for each effect. It is reported that the eSiGe profile can have a significant impact on the STI proximity effect for p-MOSFETs and that DSL boundary proximity can cause significant channel mobility degradation for both n- and p-MOSFETs. Both effects result in the reduction in channel strain along the [110] direction.


IEEE Electron Device Letters | 2011

Pocket Implant-Dependent Channel Mobility in Advanced p-MOSFETs With Strain Engineering

Youn Sung Choi; Shashank S. Ekbote; Greg C. Baldwin

A new approach to channel mobility engineering using strained-Si technology is described with a complete data analysis. It is discussed that [110]/(100) Si channel mobility in p-MOSFET with embedded SiGe source/drain and compressive stress liner can be strongly dependent on pocket implant dose, resulting from a change in piezoresistance coefficient as a function of p-type carrier dopant concentration in the vicinity of the channel, whereas channel mobility of n-MOSFETs shows weaker dependence on pocket implant dose due to: 1) smaller piezoresistance coefficient of n-channel and 2) less channel strain relative to p-MOSFETs.


Archive | 2004

Integrated circuit inductor with integrated vias

Robert L. Pitts; Greg C. Baldwin


Archive | 2002

Multi-layer silicide block process

Greg C. Baldwin; Freidoon Mehrad


Archive | 2014

LOW TEMPERATURE COEFFICIENT RESISTOR IN CMOS FLOW

Greg C. Baldwin; Kamel Benaissa; Sarah Liu; Song Zhao


Archive | 2005

Method of making transistors and non-silicided polysilicon resistors for mixed signal circuits

Sarah Liu; Greg C. Baldwin; Haowen Bu; Shashank S. Ekbote


Archive | 2001

System to minimize the temperature coefficient of resistance of passive resistors in an integrated circuit process flow

Greg C. Baldwin; Alwin J. Tsao


Archive | 1999

Combination test structures for in-situ measurements during fabrication of semiconductor devices

Mahalingam Nandakumar; Greg C. Baldwin; Andrew T. Appel

Collaboration


Dive into the Greg C. Baldwin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge