Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Guggi Kofod is active.

Publication


Featured researches published by Guggi Kofod.


Journal of Intelligent Material Systems and Structures | 2003

Actuation Response of Polyacrylate Dielectric Elastomers

Guggi Kofod; Peter Sommer-Larsen; Roy D. Kornbluh; Ron Pelrine

Polyacrylate dielectric elastomers have yielded extremely large strain and elastic energy density suggesting that they are useful for many actuator applications. A thorough understanding of the physics underlying the mechanism of the observed response to an electric field can help develop improved actuators. The response is believed to be due to Maxwell stress, a quadratic dependence of the stress upon applied electric field. Based on this supposition, an equation relating the applied voltage to the measured force from an actuator was derived. Experimental data fit with the expected behavior, though there are discrepancies. Further analysis suggests that these arise mostly from imperfect manufacture of the actuators, though there is a small contribution from an explicitly electrostrictive behavior of the acrylic adhesive. Measurements of the dielectric constant of stretched polymer reveal that the dielectric constant drops, when the polymer is strained, indicating the existence of a small electrostrictive effect. Finally, measurements of the electric breakdown field were made. These also show a dependence upon the strain. In the unstrained state the breakdown field is 20 MV/m, which grows to 218 MV/m at 500 500% strain. This large increase could prove to be of importance in actuator design.


Advanced Materials | 2000

High-Strain Actuator Materials Based on Dielectric Elastomers

Ron Pelrine; Roy D. Kornbluh; Guggi Kofod

Dielectric elastomers are a new class of actuator materials that exhibit excellent performance. The principle of operation, as well as methods to fabricate and test these elastomers, is summarized here. The Figure is a sketch of an elastomer film (light gray) stretched on a frame (black) and patterned with an electrode (mid-gray). Upon applying a voltage, the active portion of the elastomer expands and the strain can easily be measured optically.


Applied Physics Letters | 2007

Energy minimization for self-organized structure formation and actuation

Guggi Kofod; Werner Wirges; Mika Paajanen; Siegfried Bauer

An approach for creating complex structures with embedded actuation in planar manufacturing steps is presented. Self-organization and energy minimization are central to this approach, illustrated with a model based on minimization of the hyperelastic free energy strain function of a stretched elastomer and the bending elastic energy of a plastic frame. A tulip-shaped gripper structure illustrates the technological potential of the approach. Advantages are simplicity of manufacture, complexity of final structures, and the ease with which any electroactive material can be exploited as means of actuation.


Journal of Physics D | 2008

The static actuation of dielectric elastomer actuators : how does pre-stretch improve actuation?

Guggi Kofod

It has previously been shown that providing dielectric elastomer actuators with a level of pre-stretch can improve properties such as breakdown strength, actuation strain and efficiency. The actuation in such actuators depends on an interplay between the highly nonlinear hyperelastic stress–strain behaviour with the electrostatic Maxwells stress; however, the direct effects of pre-stretch on the electromechanical coupling have still not been investigated in detail. We compare several experimental results found in the literature on the hyperelastic parameters of the Ogden model for the commonly used material VHB 4910, and introduce a more detailed and thus more accurate fit to a previous uniaxial stress–strain experiment. Electrostatic actuation models for a pure shear cuboid dielectric elastomer actuator with pre-stretch are introduced, for both intensive and extensive variables. For both intensive and extensive variables the constant strain (blocked stress or force) as well as the actuation strain is presented. It is shown how in the particular case of isotropic amorphous elastomers the pre-stretch does not affect the electromechanical coupling directly, and that the enhancement in actuation strain due to pre-stretch occurs through the alteration of the geometrical dimensions of the actuator. Also, the presence of the optimum load is explained as being due to the plateau region in the force–stretch curve, and it is shown that pre-stretch is not able to affect its position. Finally, it is shown how the simplified Ogden fit leads to entirely different conclusions for actuation strain in terms of extensive variables as does the detailed fit, emphasizing the importance of employing accurate hyperelastic models for the stress–stretch behaviour of the elastomer.


Advanced Materials | 2013

Soft Conductive Elastomer Materials for Stretchable Electronics and Voltage Controlled Artificial Muscles

Hristiyan Stoyanov; Matthias Kollosche; Sebastian Risse; Rémi Waché; Guggi Kofod

Block copolymer elastomer conductors (BEC) are mixtures of block copolymers grafted with conducting polymers, which are found to support very large strains, while retaining a high level of conductivity. These novel materials may find use in stretchable electronics. The use of BEC is demonstrated in a capacitive strain sensor and in an artificial muscle of the dielectric elastomer actuator type, supporting more than 100% actuation strain and capacity strain sensitivity up to 300%.


Soft Matter | 2011

Elastic block copolymer nanocomposites with controlled interfacial interactions for artificial muscles with direct voltage control

Hristiyan Stoyanov; Matthias Kollosche; Sebastian Risse; Denis N. McCarthy; Guggi Kofod

Soft, physically crosslinking, block copolymer elastomers were filled with surface-treated nanoparticles, in order to evaluate the possibility for improvement of their properties when used as soft dielectric actuators. The nanoparticles led to improvements in dielectric properties, however they also reinforced the elastomer matrix. Comparing dielectric spectra of composites with untreated and surface-treated particles showed a measurable influence of the surface on the dielectric loss behaviour for high filler amounts, strongly indicating an improved host–guest interaction for the surface-treated particles. Breakdown strength was measured using a test bench and was found to be in good agreement with the results from the actuation measurements. Actuation responses predicted by a model for prestrained actuators agreed well with measurements up to a filler amount of 20%vol. Strong improvements in actuation behaviour were observed, with an optimum near 15%volnanoparticles, corresponding to a reduction in electrical field of 27% for identical actuation strains. The use of physically crosslinking elastomer ensured the mechanical properties of the matrix elastomer were unchanged by nanoparticles effecting the crosslinking reaction, contrary to similar experiments performed with chemically crosslinking elastomers. This allows for a firm conclusion about the positive effects of surface-treated nanoparticles on actuation behavior.


Applied Physics Letters | 2009

Dielectric properties and electric breakdown strength of a subpercolative composite of carbon black in thermoplastic copolymer

Hristiyan Stoyanov; Denis N. Mc Carthy; Matthias Kollosche; Guggi Kofod

We investigate the dielectric properties and electric breakdown strength of subpercolative composites of conductive carbon black particles in a rubber insulating matrix. A significant increase in the permittivity in the vicinity of the insulator to conductor transition was observed, with relatively low increases in dielectric loss; however, a rapid decrease in electric breakdown strength was inevitable. A steplike feature was ascribed to agglomeration effects. The low ultimate values of the electric field strength of such composites appear to prohibit practical use.


Smart Structures and Materials 2001: Electroactive Polymer Actuators and Devices | 2001

Applications of dielectric elastomer actuators

Ron Pelrine; Peter Sommer-Larsen; Roy D. Kornbluh; Richard Heydt; Guggi Kofod; Qibing Pei; Peter Gravesen

Dielectric elastomer actuators, based on the field-induced deformation of elastomeric polymers with compliant electrodes, can produce a large strain response, combined with a fast response time and high electromechanical efficiency. This unique performance, combined with other factors such as low cost, suggests many potential applications, a wide range of which are under investigation. Applications that effectively exploit the properties of dielectric elastomers include artificial muscle actuators for robots; low-cost, lightweight linear actuators; solid- state optical devices; diaphragm actuators for pumps and smart skins; acoustic actuators; and rotary motors. Issues that may ultimately determine the success or failure of the actuation technology for specific applications include the durability of the actuator, the performance of the actuator under load, operating voltage and power requirements, and electronic driving circuitry, to name a few.


Smart Materials and Structures | 2015

Standards for dielectric elastomer transducers

Federico Carpi; Iain A. Anderson; Siegfried Bauer; Gabriele Frediani; Giuseppe Carmine Gallone; Massimiliano Gei; Christian Graaf; Claire Jean-Mistral; William Kaal; Guggi Kofod; Matthias Kollosche; Roy D. Kornbluh; Benny Lassen; Marc Matysek; Silvain Michel; Stephan Nowak; Benjamin M. O’Brien; Qibing Pei; Ron Pelrine; Björn Rechenbach; Samuel Rosset; Herbert Shea

Dielectric elastomer transducers consist of thin electrically insulating elastomeric membranes coated on both sides with compliant electrodes. They are a promising electromechanically active polymer technology that may be used for actuators, strain sensors, and electrical generators that harvest mechanical energy. The rapid development of this field calls for the first standards, collecting guidelines on how to assess and compare the performance of materials and devices. This paper addresses this need, presenting standardized methods for material characterisation, device testing and performance measurement. These proposed standards are intended to have a general scope and a broad applicability to different material types and device configurations. Nevertheless, they also intentionally exclude some aspects where knowledge and/or consensus in the literature were deemed to be insufficient. This is a sign of a young and vital field, whose research development is expected to benefit from this effort towards standardisation.


Journal of Materials Chemistry | 2010

Molecular composites with enhanced energy density for electroactive polymers

Hristiyan Stoyanov; Matthias Kollosche; Denis N. McCarthy; Guggi Kofod

Actuators based on soft dielectric elastomers deform due to electric field induced Maxwells stress, interacting with the mechanical properties of the material. The relatively high operating voltages of such actuators can be reduced by increasing the permittivity of the active material, while maintaining the mechanical properties and high electrical breakdown strength. Approaches relying on the use of highly polarizable molecules or conjugated polymers have so far provided the best results, however it has been difficult to maintain high breakdown strengths. In this work, a new approach for increasing the electrostatic energy density of a soft polymer based on molecular composites is presented, relying on chemically grafting soft gel-state π-conjugated conducting macromolecules (polyaniline (PANI)) to a flexible elastomer backbone SEBS-g-MA (poly-styrene-co-ethylene-co-butylene-co-styrene-g-maleic anhydride). The approach was found to result in composites of increased permittivity (470% over the elastomer matrix) with hardly any reduction in breakdown strength (from 140 to 120 V μm−1), resulting in a large increase in stored electrostatic energy. This led to an improvement in the measured electromechanical response as well as in the maximum actuation strain. A transition was observed when amounts of PANI exceeded 2 vol%, which was ascribed to the exhaustion of the MA-functionality of the SEBS-g-MA. The transition led to drastic increases in permittivity and conductivity, and a sharp drop in electrical breakdown strength. Although the transition caused further improvement of the electromechanical response, the reduction in electrical breakdown strength caused a limitation of the maximum achievable actuation strain.

Collaboration


Dive into the Guggi Kofod's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A. Becker

University of Potsdam

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge