Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marko Radosavljevic is active.

Publication


Featured researches published by Marko Radosavljevic.


IEEE Transactions on Nanotechnology | 2005

Benchmarking nanotechnology for high-performance and low-power logic transistor applications

Robert S. Chau; Suman Datta; Mark L. Doczy; Brian S. Doyle; Boyuan Jin; Jack T. Kavalieros; Amlan Majumdar; Matthew V. Metz; Marko Radosavljevic

Recently there has been tremendous progress made in the research of novel nanotechnology for future nanoelectronic applications. In particular, several emerging nanoelectronic devices such as carbon-nanotube field-effect transistors (FETs), Si nanowire FETs, and planar III-V compound semiconductor (e.g., InSb, InAs) FETs, all hold promise as potential device candidates to be integrated onto the silicon platform for enhancing circuit functionality and also for extending Moores Law. For high-performance and low-power logic transistor applications, it is important that these research devices are frequently benchmarked against the existing Si logic transistor data in order to gauge the progress of research. In this paper, we use four key device metrics to compare these emerging nanoelectronic devices to the state-of-the-art planar and nonplanar Si logic transistors. These four metrics include: 1) CV/I or intrinsic gate delay versus physical gate length L/sub g/; 2) energy-delay product versus L/sub g/; 3) subthreshold slope versus L/sub g/; and 4) CV/I versus on-to-off-state current ratio I/sub ON//I/sub OFF/. The results of this benchmarking exercise indicate that while these novel nanoelectronic devices show promise and opportunities for future logic applications, there still remain shortcomings in the device characteristics and electrostatics that need to be overcome. We believe that benchmarking is a key element in accelerating the progress of nanotechnology research for logic transistor applications.


international electron devices meeting | 2011

Fabrication, characterization, and physics of III–V heterojunction tunneling Field Effect Transistors (H-TFET) for steep sub-threshold swing

Gilbert Dewey; Benjamin Chu-Kung; J. Boardman; J. M. Fastenau; J. Kavalieros; Roza Kotlyar; W. K. Liu; D. Lubyshev; Matthew Hillsboro Metz; Niloy Mukherjee; P. Oakey; Ravi Pillarisetty; Marko Radosavljevic; Han Wui Then; Robert S. Chau

This work demonstrates the steepest subthreshold swing (SS < 60mV/decade) ever reported in a III–V Tunneling Field Effect Transistor (TFET) by using thin gate oxide, heterojunction engineering and high source doping. Owing to a lower source-to-channel tunnel barrier height, heterojunction III–V TFETs demonstrate steeper subthreshold swing (SS) at a given drain current (ID) and improved drive current compared to the homojunction III–V TFETs. Electrical oxide thickness (EOT) scaling and increased source doping in tandem with tunnel barrier height reduction are shown to greatly improve the SS of the III–V TFETs and increase ID by more than 20X.


symposium on vlsi technology | 2006

Tri-Gate Transistor Architecture with High-k Gate Dielectrics, Metal Gates and Strain Engineering

Jack T. Kavalieros; Brian S. Doyle; Suman Datta; Gilbert Dewey; Mark L. Doczy; Ben Jin; Dan Lionberger; Matthew V. Metz; Marko Radosavljevic; Uday Shah; Nancy M. Zelick; Robert S. Chau

We have combined the benefits of the fully depleted tri-gate transistor architecture with high-k gate dielectrics, metal gate electrodes and strain engineering. High performance NMOS and PMOS trigate transistors are demonstrated with IDSAT=1.4 mA/mum and 1.1 mA/mum respectively (IOFF=100nA/mum, VCC =1.1V and LG=40nm) with excellent short channel effects (SCE)-DIBL and subthreshold swing, DeltaS. The contributions of strain, the lang100rang vs. lang110rang substrate orientations, high-k gate dielectrics, and low channel doping are investigated for a variety of channel dimensions and FIN profiles. We observe no evidence of early parasitic corner transistor turn-on in the current devices which can potentially degrade ION-IOFF and DeltaS


international electron devices meeting | 2008

High-performance 40nm gate length InSb p-channel compressively strained quantum well field effect transistors for low-power (VCC=0.5V) logic applications

Marko Radosavljevic; T. Ashley; Aleksey D. Andreev; Stuart D. Coomber; Gilbert Dewey; M. T. Emeny; M. Fearn; D.G. Hayes; Keith P. Hilton; Mantu K. Hudait; R. Jefferies; T. Martin; Ravi Pillarisetty; Titash Rakshit; Stephen L. J. Smith; Michael J. Uren; David J. Wallis; P. J. Wilding; Robert S. Chau

This paper describes for the first time, a high-speed and low-power III-V p-channel QWFET using a compressively strained InSb QW structure. The InSb p-channel QW device structure, grown using solid source MBE, demonstrates a high hole mobility of 1,230 cm2/V-s. The shortest 40 nm gate length (LG) transistors achieve peak transconductance (Gm) of 510 muS/mum and cut-off frequency (fT) of 140 GHz at supply voltage of 0.5V. These represent the highest Gm and fT ever reported for III-V p-channel FETs. In addition, effective hole velocity of this device has been measured and compared to that of the standard strained Si p-channel MOSFET.


international electron devices meeting | 2009

Advanced high-K gate dielectric for high-performance short-channel In 0.7 Ga 0.3 As quantum well field effect transistors on silicon substrate for low power logic applications

Marko Radosavljevic; Benjamin Chu-Kung; S. Corcoran; Gilbert Dewey; Mantu K. Hudait; J. M. Fastenau; J. Kavalieros; W. K. Liu; D. Lubyshev; Matthew Hillsboro Metz; K. Millard; Niloy Mukherjee; Uday Shah; Robert S. Chau

This paper describes integration of an advanced composite high-K gate stack (4nm TaSiO<inf>x</inf>-2nm InP) in the In<inf>0.7</inf>Ga<inf>0.3</inf>As quantum-well field effect transistor (QWFET) on silicon substrate. The composite high-K gate stack enables both (i) thin electrical oxide thickness (t<inf>OXE</inf>) and low gate leakage (J<inf>G</inf>) and (ii) effective carrier confinement and high effective carrier velocity (V<inf>eff</inf>) in the QW channel. The L<inf>G</inf>=75nm In<inf>0.7</inf>Ga<inf>0.3</inf>As QWFET on Si with this composite high-K gate stack achieves high transconductance of 1750µS/µm and high drive current of 0.49mA/µm at V<inf>DS</inf>=0.5V.


international electron devices meeting | 2011

Electrostatics improvement in 3-D tri-gate over ultra-thin body planar InGaAs quantum well field effect transistors with high-K gate dielectric and scaled gate-to-drain/gate-to-source separation

Marko Radosavljevic; Gilbert Dewey; Dipanjan Basu; J. Boardman; Benjamin Chu-Kung; J. M. Fastenau; S. Kabehie; J. Kavalieros; Van H. Le; W. K. Liu; D. Lubyshev; Matthew Hillsboro Metz; K. Millard; Niloy Mukherjee; L. Pan; Ravi Pillarisetty; Uday Shah; Han Wui Then; Robert S. Chau

In this work, 3-D Tri-gate and ultra-thin body planar InGaAs quantum well field effect transistors (QWFETs) with high-K gate dielectric and scaled gate-to-source/gate-to-drain (LSIDE) have been fabricated and compared. For the first time, 3-D Tri-gate InGaAs devices demonstrate electrostatics improvement over the ultra-thin (QW thickness, TQW=10nm) body planar InGaAs device due to (i) narrow fin width (WFIN) of 30nm and (ii) high quality high-K gate dielectric interface on the InGaAs fin. Additionally, the 3-D Tri-gate InGaAs devices in this work achieve the best electrostatics, as evidenced by the steepest SS and the smallest DIBL, ever reported for any high-K III–V field effect transistor. The results in this work show that the 3-D Tri-gate device architecture is an effective way to improve the scalability of III–V FETs for future low power logic applications.


IEEE Electron Device Letters | 2007

Ultrahigh-Speed 0.5 V Supply Voltage

Suman Datta; Gilbert Dewey; J. M. Fastenau; Mantu K. Hudait; Dmitri Loubychev; W. K. Liu; Marko Radosavljevic; Roberts Beaverton Chau

The direct epitaxial growth of ultrahigh-mobility InGaAs/InAlAs quantum-well (QW) device layers onto silicon substrates using metamorphic buffer layers is demonstrated for the first time. In this letter, 80 nm physical gate length depletion-mode InGaAs QW transistors with saturated transconductance gm of 930 muS / mum and fT of 260 GHz at VDS = 0.5 V are achieved on 3.2 mum thick buffers. We expect that compound semiconductor-based advanced QW transistors could become available in the future as very high-speed and ultralow-power device technology for heterogeneous integration with the mainstream silicon CMOS.


international electron devices meeting | 2010

\hbox{In}_{0.7} \hbox{Ga}_{0.3}\hbox{As}

Marko Radosavljevic; Gilbert Dewey; J. M. Fastenau; J. Kavalieros; Roza Kotlyar; Benjamin Chu-Kung; W. K. Liu; D. Lubyshev; Matthew Hillsboro Metz; K. Millard; Niloy Mukherjee; L. Pan; Ravi Pillarisetty; Uday Shah; Robert S. Chau

In this work, non-planar, multi-gate InGaAs quantum well field effect transistors (QWFETs) with high-K gate dielectric and ultra-scaled gate-to-drain and gate-to-source separations (LSIDE) of 5nm are reported for the first time. The high-K gate dielectric formed on this non-planar device structure has the expected thin TOXE of 20.5Å with low JG, and high quality gate dielectric interface. The simplified S/D scheme is needed for the non-planar architecture while achieving significant reduction in parasitic resistance. Compared to the planar high-K InGaAs QWFET with similar TOXE, the non-planar, multi-gate InGaAs QWFET shows significantly improved electrostatics due to better gate control. The results of this work show that non-planar, multi-gate device architecture is an effective way to improve the scalability of III–V QWFETs for low power logic applications.


international electron devices meeting | 2007

Quantum-Well Transistors on Silicon Substrate

Mantu K. Hudait; Gilbert Dewey; Suman Datta; J. M. Fastenau; J. Kavalieros; W. K. Liu; D. Lubyshev; Ravi Pillarisetty; Marko Radosavljevic; Titash Rakshit; Robert S. Chau

This paper describes for the first time, the heterogeneous integration of In0.7Ga0.3As quantum well device structure on Si substrate through a novel, thin composite metamorphic buffer architecture with the total composite buffer thickness successfully scaled down to 1.mum, resulting in high- performance short-channel enhancement-mode In0.7Ga0.3As QWFETs on Si substrate for future high-speed digital logic applications at low supply voltage such as 0.5 V.


international electron devices meeting | 2012

Non-planar, multi-gate InGaAs quantum well field effect transistors with high-K gate dielectric and ultra-scaled gate-to-drain/gate-to-source separation for low power logic applications

Kelin J. Kuhn; Uygar E. Avci; Annalisa Cappellani; Martin D. Giles; Michael G. Haverty; Seiyon Kim; Roza Kotlyar; Sasikanth Manipatruni; Dmitri E. Nikonov; Chytra Pawashe; Marko Radosavljevic; Rafael Rios; Sadasivan Shankar; Ravi Vedula; Robert S. Chau; Ian Young

For the past 40 years, relentless focus on Moores Law transistor scaling has delivered ever-improving CMOS transistor density. This paper discusses architectural and materials options which will contribute to the ultimate CMOS device. In addition, the paper reviews device options beyond the ultimate CMOS device.

Collaboration


Dive into the Marko Radosavljevic's collaboration.

Researchain Logo
Decentralizing Knowledge