Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Petar Pepeljugoski is active.

Publication


Featured researches published by Petar Pepeljugoski.


IEEE Journal of Solid-state Circuits | 2006

A 10-Gb/s 5-Tap DFE/4-Tap FFE Transceiver in 90-nm CMOS Technology

John F. Bulzacchelli; Mounir Meghelli; Sergey V. Rylov; Woogeun Rhee; Alexander V. Rylyakov; Herschel A. Ainspan; Benjamin D. Parker; Michael P. Beakes; Aichin Chung; Troy J. Beukema; Petar Pepeljugoski; Lei Shan; Young H. Kwark; Sudhir Gowda; Daniel J. Friedman

This paper presents a 90-nm CMOS 10-Gb/s transceiver for chip-to-chip communications. To mitigate the effects of channel loss and other impairments, a 5-tap decision feedback equalizer (DFE) is included in the receiver and a 4-tap baud-spaced feed-forward equalizer (FFE) in the transmitter. This combination of DFE and FFE permits error-free NRZ signaling over channels with losses exceeding 30 dB. Low jitter clocks for the transmitter and receiver are supplied by a PLL with LC VCO. Operation at 10-Gb/s with good power efficiency is achieved by using half-rate architectures in both transmitter and receiver. With the transmitter producing an output signal of 1200mVppd, one transmitter/receiver pair and one PLL consume 300mW. Design enhancements of a half-rate DFE employing one tap of speculative feedback and four taps of dynamic feedback allow its loop timing requirements to be met. Serial link experiments with a variety of test channels demonstrate the effectiveness of the FFE/DFE equalization


IEEE Journal of Solid-state Circuits | 2003

Integrated transversal equalizers in high-speed fiber-optic systems

Hui Wu; Jose A. Tierno; Petar Pepeljugoski; Jeremy D. Schaub; Sudhir Gowda; Jeffrey A. Kash; Ali Hajimiri

Intersymbol interference (ISI) caused by intermodal dispersion in multimode fibers is the major limiting factor in the achievable data rate or transmission distance in high-speed multimode fiber-optic links for local area networks applications. Compared with optical-domain and other electrical-domain dispersion compensation methods, equalization with transversal filters based on distributed circuit techniques presents a cost-effective and low-power solution. The design of integrated distributed transversal equalizers is described in detail with focus on delay lines and gain stages. This seven-tap distributed transversal equalizer prototype has been implemented in a commercial 0.18-/spl mu/m SiGe BiCMOS process for 10-Gb/s multimode fiber-optic links. A seven-tap distributed transversal equalizer reduces the ISI of a 10-Gb/s signal after 800 m of 50-/spl mu/m multimode fiber from 5 to 1.38 dB, and improves the bit-error rate from about 10/sup -5/ to less than 10/sup -12/.


Journal of Lightwave Technology | 2003

Modeling and simulation of next-generation multimode fiber links

Petar Pepeljugoski; Steven Eugene Golowich; A.J. Ritger; P. Kolesar; A. Risteski

This paper describes an advanced multimode-fiber-link model that was used to aid the development of Telecommunication Industry Association standard specifications for a next-generation 50-/spl mu/m-core laser-optimized multimode fiber. The multimode-link model takes into account the interactions of the laser, the transmitter optical subassembly, and the fiber, as well as effects of connections and the receiver preamplifier. We present models for each of these components. Based on these models, we also develop an efficient and simple formalism for the calculation of the fiber transfer function and the signal at the link output in any link configuration. We demonstrate how the model may be used to develop specifications on transmitters and fibers that guarantee any desired level of performance.


IEEE Transactions on Advanced Packaging | 2009

160 Gb/s Bidirectional Polymer-Waveguide Board-Level Optical Interconnects Using CMOS-Based Transceivers

Fuad E. Doany; Clint L. Schow; Christian W. Baks; Daniel M. Kuchta; Petar Pepeljugoski; Laurent Schares; Russell A. Budd; Frank R. Libsch; Roger Dangel; Folkert Horst; Bert Jan Offrein; Jeffrey A. Kash

We have developed parallel optical interconnect technologies designed to support terabit/s-class chip-to-chip data transfer through polymer waveguides integrated in printed circuit boards (PCBs). The board-level links represent a highly integrated packaging approach based on a novel parallel optical module, or Optomodule, with 16 transmitter and 16 receiver channels. Optomodules with 16 Tx+16 Rx channels have been assembled and fully characterized, with transmitters operating at data rates up to 20 Gb/s for a 27-1 PRBS pattern. Receivers characterized as fiber-coupled 16-channel transmitter-to-receiver links operated error-free up to 15 Gb/s, providing a 240 Gb/s aggregate bidirectional data rate. The low-profile Optomodule is directly surface mounted to a circuit board using convention ball grid array (BGA) solder process. Optical coupling to a dense array of polymer waveguides fabricated on the PCB is facilitated by turning mirrors and lens arrays integrated into the optical PCB. A complete optical link between two Optomodules interconnected through 32 polymer waveguides has been demonstrated with each unidirectional link operating at 10 Gb/s achieving a 160 Gb/s bidirectional data rate. The full module-to-module link provides the fastest, widest, and most integrated multimode optical bus demonstrated to date.


optical fiber communication conference | 2006

Chip-to-chip optical interconnects

Jeffrey A. Kash; Fuad E. Doany; Laurent Schares; Clint L. Schow; Christian Schuster; Daniel M. Kuchta; Petar Pepeljugoski; Jeannine M. Trewhella; Christian W. Baks; Richard A. John; J.L. Shan; Young H. Kwark; Russell A. Budd; Punit P. Chiniwalla; Frank R. Libsch; Joanna Rosner; Cornelia K. Tsang; Chirag S. Patel; Jeremy D. Schaub; Daniel Kucharski; D. Guckenberger; S. Hedge; H. Nyikal; Roger Dangel; Folkert Horst; Bert Jan Offrein; C.K. Lin; Ashish Tandon; G.R. Trott; M. Nystrom

Terabus is based on a silicon-carrier interposer on an organic card containing 48 polymer waveguides. We have demonstrated 4times12 arrays of low power optical transmitters and receivers, operating up to 20 Gb/s and 14 Gb/s per channel respectively


Journal of Lightwave Technology | 2004

120-Gb/s VCSEL-based parallel-optical interconnect and custom 120-Gb/s testing station

Daniel M. Kuchta; Young H. Kwark; Christian Schuster; Christian W. Baks; Chuck Haymes; Jeremy D. Schaub; Petar Pepeljugoski; Lei Shan; Richard A. John; Daniel Kucharski; Dennis L. Rogers; Mark B. Ritter; Jack L. Jewell; Luke A. Graham; Karl Schrödinger; Alexander Schild; H.-M. Rein

A 120-Gb/s optical link (12 channels at 10 Gb/s/ch for both a transmitter and a receiver) has been demonstrated. The link operated at a bit-error rate of less than 10/sup -12/ with all channels operating and with a total fiber length of 316 m, which comprises 300 m of next-generation (OM-3) multimode fiber (MMF) plus 16 m of standard-grade MMF. This is the first time that a parallel link with this bandwidth at this per-channel rate has ever been demonstrated. For the transmitter, an SiGe laser driver was combined with a GaAs vertical-cavity surface-emitting laser (VCSEL) array. For the receiver, the signal from a GaAs photodiode array was amplified by a 12-channel SiGe receiver integrated circuit. Key to the demonstration were several custom testing tools, most notably a 12-channel pattern generator. The package is very similar to the commercial parallel modules that are available today, but the per-channel bit rate is three times higher than that for the commercial modules. The new modules demonstrate the possibility of extending the parallel-optical module technology that is available today into a distance-bandwidth product regime that is unattainable for copper cables.


Journal of Lightwave Technology | 2003

Development of system specification for laser-optimized 50-/spl mu/m multimode fiber for multigigabit short-wavelength LANs

Petar Pepeljugoski; M.J. Hackert; J.S. Abbott; S.E. Swanson; S.E. Golowich; A.J. Ritger; P. Kolesar; Y.C. Chen; P. Pleunis

This paper presents the scientific arguments used in the specification development process by the Telecommunications Industry Association (TIA) Working Group FO-2.2.1 to develop the new multimode fiber and vertical-cavity surface-emitting laser specifications for high-speed application in data communications. Numerous engineering and commercial tradeoffs are described. The specification minimizes the link failure rate and overall link cost through utilization of communication-theory-based modeling and experimental verification. This was balanced against the reality of manufacturing costs attempting to maximize the yield of individual link components. The specific application used as an example has 50-/spl mu/m graded-index multimode fiber operating at 10 Gb/s (e.g., 10 Gb/s Ethernet and fiber channel). The link performance is determined by the interaction of the fiber intermodal dispersion measured by the differential modal delay, and the transceiver launch distribution into the multimode fiber measured by encircled flux. A theoretically based model and the simulation approach that were used to simulate 40 000 links are described. The information from these simulations was used to determine the specification limits. In addition, sensitivity to the specification limits was evaluated. The experimental results of a round robin conducted by the TIA are presented, which confirm that the modeled performance would yield the expected results in actual practice.


IEEE Photonics Technology Letters | 2002

15.6-Gb/s transmission over 1 km of next generation multimode fiber

Petar Pepeljugoski; Daniel M. Kuchta; Y. Kwark; P. Pleunis; G. Kuyt

In this letter, we report on a 15.6-Gb/s transmission over 1 km of next generation multimode fiber. The short wavelength vertical-cavity surface-emitting laser (VCSEL) transmitter module used a SiGe bipolar VCSEL driver. The multimode fiber was almost ideal and had a total differential mode delay width of only 0.056 ps/m. We also achieved 20-Gb/s transmission over 200 m.


IEEE Transactions on Advanced Packaging | 2009

Is 25 Gb/s On-Board Signaling Viable?

Dong Gun Kam; Mark B. Ritter; Troy J. Beukema; John F. Bulzacchelli; Petar Pepeljugoski; Young H. Kwark; Lei Shan; Xiaoxiong Gu; Christian W. Baks; Richard A. John; Gareth G. Hougham; Christian Schuster; Renato Rimolo-Donadio; Boping Wu

What package improvements are required for dense, high-aggregate bandwidth buses running at data rates beyond 10 Gb/s per channel, and when might optical interconnects on the board be required? We present a study of distance and speed limits for electrical on-board module-to-module links with an eye to answering these questions. Hardware-validated models of advanced organic modules and printed circuit boards were used to explore these limits. Simulations of link performance performed with an internal link modeling tool allowed us to explore the effect of equalization and modulation formats at different data rates on link bit error rate and eye opening. Our link models have been validated with active, high-speed differential bus measurements utilizing a 16-channel link chip with programmable equalization and a per-channel data rate of up to 11 Gb/s. Electrical signaling limits were then determined by extrapolating these hardware-correlated models to higher speeds, and these limits were compared to the results of recent work on on-board optical interconnects.


Journal of Lightwave Technology | 2012

End-to-End Multicore Multimode Fiber Optic Link Operating up to 120 Gb/s

Benjamin G. Lee; Daniel M. Kuchta; Fuad E. Doany; Clint L. Schow; Petar Pepeljugoski; Christian W. Baks; Thierry F. Taunay; Benyuan Zhu; Man F. Yan; George Oulundsen; Durgesh Vaidya; Wenlin Luo; Neinyi Li

A full multicore fiber optic link is demonstrated, transmitting greater than 100 Gb/s through a single strand of multimode fiber for the first time. The fiber, which consists of seven graded-index multimode cores, is used to transmit up to 120 Gb/s over 100 m using a custom multicore-fiber interfacing transmitter and receiver. 2-D arrays of vertical-cavity surface-emitting lasers (VCSELs) and vertically illuminated photodiodes (PDs) are fabricated with a geometry corresponding to the outer six cores of the seven-core fiber, which is arranged in a hexagonal pattern. Both flip-chip and wire-bonding technologies are used to package the VCSEL and PD chips with multichannel transmitter and receiver integrated circuits. Amplitude and timing margins of the end-to-end signals are analyzed through bit-error-rate (BER) measurements. The effects of electrical and optical crosstalk are shown to result in negligible degradation to the BER performance.

Researchain Logo
Decentralizing Knowledge