Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Fuad E. Doany is active.

Publication


Featured researches published by Fuad E. Doany.


IEEE Photonics Technology Letters | 2015

A 71-Gb/s NRZ Modulated 850-nm VCSEL-Based Optical Link

Daniel M. Kuchta; Alexander V. Rylyakov; Fuad E. Doany; Clint L. Schow; Jonathan E. Proesel; Christian W. Baks; Petter Westbergh; Johan S. Gustavsson; Anders Larsson

We report error free (BER <; 10-12) operation of a directly non-return-to-zero modulated 850-nm vertical cavity surface-emitting laser (VCSEL) link operating to 71 Gb/s. This is the highest error free modulation rate for a directly modulated laser of any type. The optical link consists of a 130-nm BiCMOS driver IC with two-tap feed-forward equalization, a wide bandwidth 850-nm VCSEL, a surface illuminated GaAs PIN photodiode, and a 130-nm BiCMOS receiver IC.


IEEE Transactions on Advanced Packaging | 2009

160 Gb/s Bidirectional Polymer-Waveguide Board-Level Optical Interconnects Using CMOS-Based Transceivers

Fuad E. Doany; Clint L. Schow; Christian W. Baks; Daniel M. Kuchta; Petar Pepeljugoski; Laurent Schares; Russell A. Budd; Frank R. Libsch; Roger Dangel; Folkert Horst; Bert Jan Offrein; Jeffrey A. Kash

We have developed parallel optical interconnect technologies designed to support terabit/s-class chip-to-chip data transfer through polymer waveguides integrated in printed circuit boards (PCBs). The board-level links represent a highly integrated packaging approach based on a novel parallel optical module, or Optomodule, with 16 transmitter and 16 receiver channels. Optomodules with 16 Tx+16 Rx channels have been assembled and fully characterized, with transmitters operating at data rates up to 20 Gb/s for a 27-1 PRBS pattern. Receivers characterized as fiber-coupled 16-channel transmitter-to-receiver links operated error-free up to 15 Gb/s, providing a 240 Gb/s aggregate bidirectional data rate. The low-profile Optomodule is directly surface mounted to a circuit board using convention ball grid array (BGA) solder process. Optical coupling to a dense array of polymer waveguides fabricated on the PCB is facilitated by turning mirrors and lens arrays integrated into the optical PCB. A complete optical link between two Optomodules interconnected through 32 polymer waveguides has been demonstrated with each unidirectional link operating at 10 Gb/s achieving a 160 Gb/s bidirectional data rate. The full module-to-module link provides the fastest, widest, and most integrated multimode optical bus demonstrated to date.


Optics Express | 2011

Non-blocking 4x4 electro-optic silicon switch for on-chip photonic networks

Min Yang; William M. J. Green; Solomon Assefa; Joris Van Campenhout; Benjamin G. Lee; Christopher V. Jahnes; Fuad E. Doany; Clint L. Schow; Jeffrey A. Kash; Yurii A. Vlasov

We present a 4x4 spatially non-blocking Mach-Zehnder based silicon optical switch fabricated using processes fully compatible with standard CMOS. We successfully demonstrate operation in all 9 unique switch states and 12 possible I/O routing configurations, with worst-case cross-talk levels lower than -9 dB, and common spectral bandwidth of 7 nm. High-speed 40 Gbps data transmission experiments verify optical data integrity for all input-output channels.


optical fiber communication conference | 2006

Chip-to-chip optical interconnects

Jeffrey A. Kash; Fuad E. Doany; Laurent Schares; Clint L. Schow; Christian Schuster; Daniel M. Kuchta; Petar Pepeljugoski; Jeannine M. Trewhella; Christian W. Baks; Richard A. John; J.L. Shan; Young H. Kwark; Russell A. Budd; Punit P. Chiniwalla; Frank R. Libsch; Joanna Rosner; Cornelia K. Tsang; Chirag S. Patel; Jeremy D. Schaub; Daniel Kucharski; D. Guckenberger; S. Hedge; H. Nyikal; Roger Dangel; Folkert Horst; Bert Jan Offrein; C.K. Lin; Ashish Tandon; G.R. Trott; M. Nystrom

Terabus is based on a silicon-carrier interposer on an organic card containing 48 polymer waveguides. We have demonstrated 4times12 arrays of low power optical transmitters and receivers, operating up to 20 Gb/s and 14 Gb/s per channel respectively


Journal of Lightwave Technology | 2012

Terabit/s-Class Optical PCB Links Incorporating 360-Gb/s Bidirectional 850 nm Parallel Optical Transceivers

Fuad E. Doany; Clint L. Schow; Benjamin G. Lee; Russell A. Budd; Christian W. Baks; Cornelia K. Tsang; John U. Knickerbocker; Roger Dangel; Benson Chan; How Lin; Chase Carver; Jianzhuang Huang; Jessie Berry; David Bajkowski; Frank R. Libsch; Jeffrey A. Kash

We report here on the design, fabrication, and characterization of highly integrated parallel optical transceivers designed for Tb/s-class module-to-module data transfer through polymer waveguides integrated into optical printed circuit boards (o-PCBs). The parallel optical transceiver is based on a through-silicon-via silicon carrier as the platform for integration of 24-channel vertical cavity surface-emitting laser and photodiode arrays with CMOS ICs. The Si carrier also includes optical vias (holes) for optical access to conventional surface-emitting 850 nm optoelectronic devices. The 48-channel 3-D transceiver optochips are flip-chip soldered to organic carriers to form transceiver optomodules. Fully functional optomodules with 24 transmitter + 24 receiver channels were assembled and characterized with transmitters operating up to 20 Gb/s/ch and receivers up to 15 Gb/s/ch. At 15 Gb/s, the 48-channel optomodules provide a bidirectional aggregate bandwidth of 360 Gb/s. In addition, o-PCBs have been developed using a 48-channel flex waveguide assembly attached to FR4 electronic boards. Incorporation of waveguide turning mirrors and lens arrays facilitates optical coupling to/from the o-PCB. Assembly of optomodules to the o-PCB using a ball grid array process provides both electrical and optical interconnections. An initial demonstration of the full module-to-module optical link achieved >; 20 bidirectional links at 10 Gb/s. At 15 Gb/s, operation at a bit error ratio of <; 10- 12 was demonstrated for 15 channels in each direction, realizing a record o-PCB link with a 225 Gb/s bidirectional aggregate data rate.


optical fiber communication conference | 2007

Ge-on-SOI-Detector/Si-CMOS-Amplifier Receivers for High-Performance Optical-Communication Applications

Steven J. Koester; Clint L. Schow; Laurent Schares; Gabriel Dehlinger; Jeremy D. Schaub; Fuad E. Doany; Richard A. John

In this paper, an overview and assessment of high-performance receivers based upon Ge-on-silicon-on-insulator (Ge-on-SOI) photodiodes and Si CMOS amplifier ICs is provided. Receivers utilizing Ge-on-SOI lateral p-i-n photodiodes paired with high-gain CMOS amplifiers are shown to operate at 15 Gb/s with a sensitivity of -7.4 dBm (BER=10-12) while utilizing a single supply voltage of only 2.4 V. The 5-Gb/s sensitivity of similar receivers is constant up to 93 degC, and 10-Gb/s operation is demonstrated at 85 degC. Error-free (BER<10-12) operation of receivers combining a Ge-on-SOI photodiode with a single-ended high-speed receiver front end is demonstrated at 19 Gb/s, using a supply voltage of 1.8 V. In addition, receivers utilizing Ge-on-SOI photodiodes integrated with a low-power CMOS IC are shown to operate at 10 Gb/s using a single 1.1-V supply while consuming only 11 mW of power. A perspective on the future technological capabilities and applications of Ge-detector/Si-CMOS receivers is also provided


Journal of Lightwave Technology | 2011

A 24-Channel, 300 Gb/s, 8.2 pJ/bit, Full-Duplex Fiber-Coupled Optical Transceiver Module Based on a Single “Holey” CMOS IC

Clint L. Schow; Fuad E. Doany; Alexander V. Rylyakov; Benjamin G. Lee; Christopher V. Jahnes; Young H. Kwark; Christian W. Baks; Daniel M. Kuchta; Jeffrey A. Kash

We report here on the design, fabrication, and high-speed performance of a compact 48-channel optical transceiver module enabled by a key novel component: a “holey” Optochip. A single CMOS transceiver chip with 24 receiver (RX) and 24 laser diode driver circuits, measuring 5.2 mm × 5.8 mm, becomes a holey Optochip with the fabrication of forty-eight through-substrate optical vias (holes): one for each transmitter (TX) and RX channel. Twenty-four channel, 850-nm VCSEL and photodiode arrays are directly flip-chip soldered to the Optochip with their active devices centered on the optical vias such that optical I/O is accessed through the substrate of the CMOS IC. The holey Optochip approach offers numerous advantages: 1) full compatibility with top emitting/detecting 850-nm VCSELs/PDs that are currently produced in high volumes; 2) close integration of the VCSEL/PD devices with their drive electronics for optimized high-speed performance; 3) a small-footprint, chip-scale package that minimizes CMOS die cost while maximizing transceiver packing density; 4) direct coupling to standard 4 × 12 multimode fiber arrays through a 2-lens optical system; and 5) straightforward scaling to larger 2-D arrays of TX and RX channels. Complete transceiver modules, or holey Optomodules, have been produced by flip-chip soldering assembled Optochips to high-density, high-speed organic carriers. A pluggable connector soldered to the bottom of the Optomodule provides all module electrical I/O. The Optomodule footprint, dictated by the 1-mm connector pitch, is 21 mm × 21 mm. Fully functional holey Optomodules with 24 TX and 24 RX channels operate up to 12.5 Gb/s/ch achieving efficiencies (including both TX and RX) of 8.2 pJ/bit. The aggregate 300-Gb/s bi-directional data rate is the highest ever reported for single-chip transceiver modules.


Journal of Lightwave Technology | 2011

Multichannel High-Bandwidth Coupling of Ultradense Silicon Photonic Waveguide Array to Standard-Pitch Fiber Array

Fuad E. Doany; Benjamin G. Lee; Solomon Assefa; William M. J. Green; Min Yang; Clint L. Schow; Christopher V. Jahnes; Sheng Zhang; Jonathan Singer; Victor I. Kopp; Jeffrey A. Kash; Yurii A. Vlasov

A multichannel tapered coupler interfacing standard 250-μm-pitch low-numerical-aperture (NA) polarization-maintaining fiber arrays with ultradense 20- μm-pitch high-NA silicon waveguides is designed and fabricated. The coupler is based on an array of 12 dual-core glass waveguides on 250-μ m pitch that are tapered to a 20- μm pitch, simultaneously providing both pitch and spot-size conversion. At the wide end, the inner core matches the NA and mode profile of standard single-mode fiber. When drawn and tapered, the inner core “vanishes” and the outer core, surrounded by the clad, matches the NA and mode profile of the on-chip photonic waveguide. Ultradense high-efficiency coupling to an array of Si photonic waveguides is demonstrated using a 12-channel polarization-maintaining-fiber pigtailed tapered coupler. Coupling to Si waveguides is facilitated using SiON spot-size converters integrated into the Si photonic IC to provide 2-3-μm mode field diameters compatible with the tapered coupler. The tapered coupler achieves <; 1 dB coupling losses to photonic waveguides. Furthermore, eight-channel coupling is shown with less than -35 dB crosstalk between channels. Finally, a 640-Gb/s wavelength-division-multiplexing signal is coupled into four waveguides occupying 80 μm of chip edge, providing 160-Gb/s per-channel bandwidths.


IEEE Journal of Solid-state Circuits | 2012

Silicon Photonic Switches Hybrid-Integrated With CMOS Drivers

Alexander V. Rylyakov; Clint L. Schow; Benjamin G. Lee; W. M. J. Green; Solomon Assefa; Fuad E. Doany; Min Yang; J. Van Campenhout; Christopher V. Jahnes; Jeffrey A. Kash; Y. A. Vlasov

This paper describes the design and measured performance of three different silicon photonic switches: a 2×2 switch, a 1×2 switch, and a 4×4 switch. All of the devices have been hybrid integrated with a corresponding custom 90-nm CMOS driver. The 2×2 switch is based on a wavelength-insensitive Mach-Zehnder interferometer (WIMZ) and the 1×2 is based on a two-ring resonator. The power dissipation of the 2×2 WIMZ switch was 2 mW from a 1.0-V supply, with measured transition time of 3.9 ns. The 4×4 switch, composed of six 2×2 Mach-Zehnder interferometer (MZI) switches was demonstrated to route 3×40 Gb/s WDM data with BER <; 10-12, with less than -10-dB crosstalk and 7-dB loss.


electronic components and technology conference | 2005

Silicon Carrier with Deep Through-Vias, Fine Pitch Wiring and Through Cavity for Parallel Optical Transceiver

Chirag S. Patel; Cornelia K. Tsang; Christian Schuster; Fuad E. Doany; H. Nyikal; Christian W. Baks; Russell A. Budd; Leena Paivikki Buchwalter; Paul S. Andry; D.F. Canaperi; D.C. Edelstein; Raymond Robert Horton; John U. Knickerbocker; T. Krywanczyk; Young H. Kwark; K.T. Kwietniak; J.H. Magerlein; Joanna Rosner; Edmund J. Sprogis

The design, fabrication, assembly and characterization of a novel silicon carrier package used for enabling a Tb/s parallel optical transceiver is reported. Electrical through-vias, high speed wiring and a through cavity for housing optoelectronic (OE) devices are critical features of the silicon carrier that allow high density integration of optical and electrical components on a single substrate, resulting in a small form factor system that is capable of meeting high bandwidth requirements of large computing systems. A novel hierarchical approach involving eutectic AuSn and SnPb solder systems and flip chip bonding technology is used to assemble the transceiver module. The optical system used for coupling light from the OE devices to waveguides is based on a relay lens that is integrated into the OE array. The measurement and model for alignment tolerance analysis showed constant coupling efficiency from the OE to waveguide over a range of plusmn 10 mum, giving an excellent margin for alignment. Electrical simulations and measurement of silicon carrier through-vias showed an insertion loss of better than 1 dB at 20 GHz. Simulations and measurements also exhibited an attenuation of 4.3 dB/cm at 20 GHz for high speed wiring on the silicon carrier, which was adequate for 20 Gbps data transmission over a channel length of 7 mm

Researchain Logo
Decentralizing Knowledge