Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Peter Kaspar is active.

Publication


Featured researches published by Peter Kaspar.


IEEE Journal of Selected Topics in Quantum Electronics | 2014

Hybrid III--V on Silicon Lasers for Photonic Integrated Circuits on Silicon

Guang-Hua Duan; Christophe Jany; Alban Le Liepvre; A. Accard; M. Lamponi; D. Make; Peter Kaspar; Guillaume Levaufre; Nils Girard; F. Lelarge; Jean-Marc Fedeli; A. Descos; Badhise Ben Bakir; S. Messaoudene; Damien Bordel; Sylvie Menezo; Guilhem de Valicourt; Shahram Keyvaninia; Günther Roelkens; Dries Van Thourhout; David J. Thomson; F. Y. Gardes; Graham T. Reed

This paper summarizes recent advances of integrated hybrid InP/SOI lasers and transmitters based on wafer bonding. At first the integration process of III-V materials on silicon is described. Then the paper reports on the results of single wavelength distributed Bragg reflector lasers with Bragg gratings etched on silicon waveguides. We then demonstrate that, thanks to the high-quality silicon bend waveguides, hybrid III-V/Si lasers with two integrated intra-cavity ring resonators can achieve a wide thermal tuning range, exceeding the C band, with a side mode suppression ratio higher than 40 dB. Moreover, a compact array waveguide grating on silicon is integrated with a hybrid III-V/Si gain section, creating a wavelength-selectable laser source with 5 wavelength channels spaced by 400 GHz. We further demonstrate an integrated transmitter with combined silicon modulators and tunable hybrid III-V/Si lasers. The integrated transmitter exhibits 9 nm wavelength tunability by heating an intra-cavity ring resonator, high extinction ratio from 6 to 10 dB, and excellent bit-error-rate performance at 10 Gb/s.


Optics Express | 2012

Photonic-crystal membranes for optical detection of single nano-particles, designed for biosensor application

Jon Olav Grepstad; Peter Kaspar; Olav Solgaard; Ib-Rune Johansen; Aasmund Sudbø

A sensor designed to detect bio-molecules is presented. The sensor exploits a planar 2D photonic crystal (PC) membrane with sub-micron thickness and through holes, to induce high optical fields that allow detection of nano-particles smaller than the diffraction limit of an optical microscope. We report on our design and fabrication of a PC membrane with a nano-particle trapped inside. We have also designed and built an imaging system where an optical microscope and a CCD camera are used to take images of the PC membrane. Results show how the trapped nano-particle appears as a bright spot in the image. In a first experimental realization of the imaging system, single particles with a radius of 75 nm can be detected.


Proceedings of SPIE | 2014

Hybrid III-V on silicon lasers for photonic integrated circuits on silicon

Guang-Hua Duan; Christophe Jany; Alban Le Liepvre; A. Accard; M. Lamponi; D. Make; Peter Kaspar; Guillaume Levaufre; Nils Girard; Francois Lelarge; Jean-Marc Fedeli; S. Messaoudene; Damien Bordel; S. Olivier

This paper summarizes recent advances of integrated hybrid InP/SOI lasers and transmitters based on wafer bonding. At first the integration process of III-V materials on silicon is described. Then the paper reports on the results of single wavelength distributed Bragg reflector lasers with Bragg gratings etched on silicon waveguides. We then demonstrate that, thanks to the high-quality silicon bend waveguides, hybrid III-V/Si lasers with two integrated intra-cavity ring resonators can achieve a wide thermal tuning range, exceeding the C band, with a side mode suppression ratio higher than 40 dB. Moreover, a compact array waveguide grating on silicon is integrated with a hybrid III-V/Si gain section, creating a wavelength-selectable laser source with 5 wavelength channels spaced by 400 GHz. We further demonstrate an integrated transmitter with combined silicon modulators and tunable hybrid III-V/Si lasers. The integrated transmitter exhibits 9 nm wavelength tunability by heating an intra-cavity ring resonator, high extinction ratio from 6 to 10 dB, and excellent bit-error-rate performance at 10 Gb/s.


Journal of Applied Physics | 2010

Characterization of Si volume- and delta-doped InGaAs grown by molecular beam epitaxy

Yuriy Fedoryshyn; Mattias Beck; Peter Kaspar; H. Jaeckel

Bulk InGaAs layers were grown at 400 °C lattice-matched to InP semi-insulating substrates by molecular beam epitaxy. Si doping of the layers was performed by applying volume- and delta-doping techniques. The samples were characterized by capacitance-voltage, van der Pauw–Hall, secondary ion mass spectroscopy and photoluminescence measurements. Good agreement in terms of dependence of mobility and Burstein–Moss shift shift on doping concentration in samples doped by the two different techniques was obtained. Amphoteric behavior of Si was observed at doping concentrations higher than ∼2.9×1019 cm−3 in both delta- and volume-doped samples. Degradation of InGaAs crystalline quality occurred in samples with Si concentrations higher than ∼4×1019 cm−3.


Journal of Lightwave Technology | 2015

New Advances on Heterogeneous Integration of III–V on Silicon

Guang-Hua Duan; S. Olivier; Stéphane Malhouitre; A. Accard; Peter Kaspar; Guilhem de Valicourt; Guillaume Levaufre; Nils Girard; Alban Le Liepvre; Alexandre Shen; D. Make; Francois Lelarge; Christophe Jany; Karen Ribaud; Franck Mallecot; Philippe Charbonnier; Harry Gariah; Christophe Kopp; Jean-Louis Gentner

Recent advances on hybrid III-V/Si lasers and semiconductor optical amplifiers using a wafer bonding technique are reported. In particular, III-V/Si lasers exhibiting C-band tuning range and high side-mode suppression ratio as well as high-gain semiconductor optical amplifiers are demonstrated.


european conference on optical communication | 2014

Packaged hybrid III-V/silicon SOA

Peter Kaspar; Romain Brenot; A. Le Liepvre; A. Accard; D. Make; Guillaume Levaufre; Nils Girard; Francois Lelarge; G.-H. Duan; Nicola Pavarelli; Marc Rensing; Cormac Eason; Giuseppe Talli; Peter O'Brien; S. Olivier; Stéphane Malhouitre; Christophe Kopp; Christophe Jany; S. Menezo

We present a hybrid III-V/silicon SOA, mounted in a planar package, with a fiber-to-fiber gain up to 10 dB, maximum internal gain of 28±2 dB, an internal noise figure of 10-11 dB and an output saturation power around 9 dBm.


Optics Express | 2012

Design proposal for a low loss in-plane active photonic crystal waveguide with vertical electrical carrier injection.

Roman Kappeler; Peter Kaspar; Peter Friedli; Heinz Jäckel

We propose an active waveguide design that provides both low propagation losses (< 20 dB/cm) and the capability for electrical pumping of the photonic crystal waveguide with a vertical contacting scheme. A careful estimation of a large number of parameters is required in order to obtain both properties. The proposed device supports single mode operation at the telecom wavelength λ = 1550 nm and is suitable for the implementation of in-plane active photonic crystal devices, such as semiconductor optical amplifiers and lasers.


Journal of Vacuum Science & Technology B | 2010

Silicon nitride hardmask fabrication using a cyclic CHF3-based reactive ion etching process for vertical profile nanostructures

Peter Kaspar; Yogesh Jeyaram; Heinz Jäckel; Annette Foelske; R. Kötz; Sandro Bellini

A cyclic approach to silicon nitride dry-etching is presented, which differs in concept from most established high aspect ratio etching processes. Alternating steps of CHF3 etching and oxygen plasma treatment are applied to form vertical sidewalls. During the CHF3 etching step, an etch-inhibiting fluorocarbon film gradually forms on silicon nitride surfaces, whereas the oxygen plasma step removes the fluorocarbon layer and restores the bare nitride surface. By adjusting the timing between the two steps, the etch-inhibition by the fluorocarbon film can be controlled to yield vertical sidewalls. Using x-ray photoelectron spectroscopy, the formation and removal of the fluorocarbon film are confirmed, and its chemical composition is analyzed. The authors show the influence of cycle step duration on etched sidewall angles and present the results of an optimized set of etching parameters for smooth and vertical sidewalls. By feeding only one gas at a time to the plasma reactor, they avoid having to control the ...


Optics Letters | 2009

InP-based planar photonic crystal waveguide in honeycomb lattice geometry for TM-polarized light.

Ping Ma; Peter Kaspar; Yuriy Fedoryshyn; Patric Strasser; Heinz Jäckel

We investigate manufacturable substrate-type photonic crystal waveguides relying on honeycomb lattice geometry, which shows large photonic bandgaps for TM-polarized light. To the best of our knowledge, air-hole-based photonic crystal slab waveguides with photonic bandgaps for TM-polarized light are experimentally demonstrated for the first time. The results are analyzed with numerical simulations based on the plane-wave expansion and the finite-difference time-domain method. The transmission spectra are measured, and a minimal propagation loss of 1600 dB/cm of TM modes at lambda=1520 nm for lattice constant a=590 nm is acquired with the cut-back method.


Journal of Lightwave Technology | 2011

Loss-Relevant Structural Imperfections in Substrate-Type Photonic Crystal Waveguides

Roman Kappeler; Peter Kaspar; Heinz Jäckel

Substrate-type planar 2-D photonic crystal (PhC) waveguides suffer from large experimental propagation losses compared to membrane-type PhC waveguides. Numerical simulations can give insight into the quantitative contribution to the propagation losses originating from fabrication imperfections and nonideal designs of the waveguide or the vertical layer structure. Many numerical studies have been performed in the past addressing only a part of the question. All of them lack the general overview, which is essential to identify the main source for the large propagation losses. Since those studies are performed with various numerical methods on many different PhC waveguide designs, a general overview cannot be reliably assembled from the literature. Therefore, we (re-)performed a comprehensive set of numerical experiments with the 3-D finite-difference time-domain method to investigate the influences of imperfections, such as the finite etch depth, a conical hole shape, the finite number of lateral layers of holes, the asymmetric vertical layer structure, lattice disorder, and variations of the hole radius. A major result of this paper is a list of requirements to be met by the process technology for the fabrication of a W1 PhC waveguide in the low-index contrast system (InP/InGaAsP/InP). Furthermore, we were able to identify the angled sidewalls to be responsible for the main fabrication-related propagation loss contribution. Finally, we show the potential of new, alternative low-loss waveguide designs for the weak index contrast system and emphasize the importance of using realistic hole shapes in this search process.

Collaboration


Dive into the Peter Kaspar's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge