Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rita Rooyackers is active.

Publication


Featured researches published by Rita Rooyackers.


IEEE Transactions on Electron Devices | 2007

Impact of Line-Edge Roughness on FinFET Matching Performance

Emanuele Baravelli; A. Dixit; Rita Rooyackers; M. Jurczak; Nicolo'Attilio Speciale; K. De Meyer

As a result of CMOS scaling, the critical dimension (CD) of integrated circuits has been shrinking. At sub-45 nm nodes, in which FinFET is a viable device architecture, line-edge roughness (LER) in current Si-based technologies forms a significant fraction of the line CD. In such cases, analyzing the impact of LER on FinFET performance is vital for meeting various device specifications. The impact of LER on the matching performance of FinFETs is investigated through statistical device simulations, comparing the relative importance of fin- and gate-LER. Fin-LER is shown to significantly degrade FinFET matching performance under DC and transient operations. Combining our device simulation results with experimental data, it is shown that fin-LER will dominate the intra-bit-cell stochastic mismatch in FinFET static random access memories at the LSTP-32-nm node. The electrical performance of spacer-defined fin (SDF) and resist-defined fin (RDF) patterning technologies has been compared. It is shown that, with respect to RDF patterning, the spacer-defined process has the potential to improve FinFET matching performance by 90%.


Journal of Applied Physics | 2011

Drain voltage dependent analytical model of tunnel field-effect transistors

Anne S. Verhulst; Daniele Leonelli; Rita Rooyackers; Guido Groeseneken

Tunnel field-effect transistors (TFETs) are potential successors of metal-oxide-semiconductor FETs because they promise superior input characteristics. However, the output characteristics of TFETs are poorly understood, and sometimes a superlinear onset, undesirable for circuit design, is observed. We present the first analytical model to include the impact of the drain voltage on the TFET performance. The model is developed for both a pure line-tunneling TFET and a pure point-tunneling TFET. Good agreement is observed with device simulations, especially for line-tunneling TFETs. Our model highlights and explains the superlinear onset of the output characteristics, thereby enabling an improved analysis of experimental data. Increasing the source doping level and switching to a smaller bandgap material can remove the undesired onset. We confirm this finding with our experimental data.


symposium on vlsi technology | 2007

Highly manufacturable FinFETs with sub-10nm fin width and high aspect ratio fabricated with immersion lithography

M.J.H. van Dal; Nadine Collaert; G. Doornbos; G. Vellianitis; G. Curatola; Bartek Pawlak; Ray Duffy; C. Jonville; B. Degroote; E. Altamirano; E. Kunnen; Marc Demand; S. Beckx; T. Vandeweyer; C. Delvaux; F. Leys; Andriy Hikavyy; Rita Rooyackers; M. Kaiser; R. G. R. Weemaes; S. Biesemans; Malgorzata Jurczak; K.G. Anil; Liesbeth Witters; R.J.P. Lander

We investigate scalability, performance and variability of high aspect ratio trigate FinFETs fabricated with 193 nm immersion lithography and conventional dry etch. FinFETs with fin widths down to 5nm are achieved with record aspect ratios of 13. Excellent nMOS and pMOS performance is demonstrated for narrow fins and short gates. Further improvement in nMOS performance can be achieved by eliminating access resistance that is currently attributed to poor re-crystallization of implantation damage in narrow fins. Fully-depleted FinFETs show strongly improved short channel effect (SCE) control when the fin width is scaled, even without halo-implants. Nearly ideal DIBL and sub-threshold slope (SS) are achieved down to 30nm gate length. Low leakage devices are realized by combining a fully depleted channel, HfSiO high-k dielectric, mid-gap TiN metal electrodes, and aggressive fin width scaling. Symmetrical threshold voltages (±0.35 V) are achieved. It is demonstrated that selective epitaxial growth on source and drain regions is essential to limit parasitic resistance in narrow fin devices. Parametric spread is dominated by gate length variations in short devices but within-die fin width variations are still evident for long devices.


european solid state device research conference | 2007

Multi-gate devices for the 32nm technology node and beyond

Nadine Collaert; A. De Keersgieter; A. Dixit; I. Ferain; L.-S. Lai; Damien Lenoble; Abdelkarim Mercha; Axel Nackaerts; Bartek Pawlak; Rita Rooyackers; T. Schulz; K.T. Sar; Nak-Jin Son; M.J.H. Van Dal; Peter Verheyen; K. von Arnim; Liesbeth Witters; De Meyer; S. Biesemans; M. Jurczak

Due to the limited control of the short channel effects, the high junction leakage caused by band-to-band tunneling and the dramatically increased VT statistical fluctuations, the scaling of planar bulk MOSFETs becomes more and more problematic with every technology node. The ITRS roadmap predicts that from the 32 nm technology node on planar bulk devices will not be able to meet the stringent leakage requirements anymore and that multi-gate devices will be required. In this paper, the suitability of FinFET based multi-gate devices for the 32 nm technology and beyond will be discussed. Apart from the benefits, some technological challenges will be addressed.


Japanese Journal of Applied Physics | 2010

Performance Enhancement in Multi Gate Tunneling Field Effect Transistors by Scaling the Fin-Width

Daniele Leonelli; Anne Vandooren; Rita Rooyackers; Anne S. Verhulst; Stefan De Gendt; Marc Heyns; Guido Groeseneken

This paper discusses the electrical characterization of complementary multiple-gate tunneling field effect transistors (MuGTFETs), implemented in a MuGFET technology compatible with standard complementary metal oxide semiconductor (CMOS) processing, emphasizing the dependence of the tunneling current on the fin-width. A linear dependence of the tunneling current for narrow fins with the square root of the fin width is experimentally reported for the first time. The comparison between narrow fins and planar-like fins offers additional insights about the fin-width dependence. The output characteristic shows a perfect saturation, very attractive for analog circuits. The temperature dependence is measured indicating a weak dependence as expected for tunneling devices. Measured devices with a point slope of 46 mV/dec at low biases and an Ion/Ioff ratio of 106 at a supply voltage of 1.2 V for 25 nm wide fins are reported as best performing devices with a MuGFET technology using a high-k dielectric and a metal gate inserted gate stack.


symposium on vlsi technology | 2007

A Low-Power Multi-Gate FET CMOS Technology with 13.9ps Inverter Delay, Large-Scale Integrated High Performance Digital Circuits and SRAM

K. von Arnim; E. Augendre; A.C. Pacha; T. Schulz; K.T. San; Florian Bauer; Axel Nackaerts; Rita Rooyackers; T. Vandeweyer; Bart Degroote; Nadine Collaert; A. Dixit; R. Singanamalla; W. Xiong; Andrew Marshall; C.R. Cleavelin; K. Schrufer; Malgorzata Jurczak

This paper presents an in-depth analysis of digital performance of a Multi-Gate FET technology. Ring oscillators with metal gates and undopedfins show an inverter delay of 13.9ps at 1V, the highest performance of a Multi-Gate FET technology reported at 1.9nA off-current/stage. NAND and NOR show significant improvement in delay vs. stack height compared to bulk CMOS. SRAM cells and product-typical critical paths with more than 10k transistors demonstrate the capability for large-scale integration.


symposium on vlsi technology | 2005

Layout impact on the performance of a locally strained PMOSFET

G. Eneman; Peter Verheyen; Rita Rooyackers; Faran Nouri; Lori D. Washington; Robin Degraeve; B. Kaczer; Victor Moroz; A. De Keersgieter; R. Schreutelkamp; Mark N. Kawaguchi; Yihwan Kim; A. Samoilov; Lisa M. Smith; P. Absil; K. De Meyer; M. Jurczak; S. Biesemans

We present a study on the layout dependence of a SiGe S/D PMOSFET technology. While 65% increase in drive current is obtained for 45nm gate length transistors with large active areas, measurements and simulations show that this improvement may be seriously degraded when transistor dimensions, such as the source-drain length (L/sub s/d/) and the device width are further scaled. TDDB and NBTI measurements show that the oxide reliability is not degraded for this technology.


IEEE Transactions on Electron Devices | 2006

Scalability of the Si/sub 1-x/Ge/sub x/ source/drain technology for the 45-nm technology node and beyond

Geert Eneman; Peter Verheyen; Rita Rooyackers; Faran Nouri; Lori D. Washington; R. Schreutelkamp; Victor Moroz; Lee Smith; An De Keersgieter; Malgorzata Jurczak; Kristin De Meyer

The authors present a study on the layout dependence of the silicon-germanium source/drain (Si1-xGex S/D) technology. Experimental results on Si1-xGex S/D transistors with various active-area sizes and polylengths are combined with stress simulations. Two technologically important configurations are investigated: the nested transistor, where a polygate is surrounded by other gates, and isolated transistors, where the active area is completely surrounded by isolation oxide. The channel stress, caused by epitaxial Si1-xGex is reduced substantially when the active area is decreased from a large size towards typical values for advanced CMOS technology nodes. Nested transistors with longer gate lengths are more sensitive towards layout scaling than shorter gates. Increasing recess depth and germanium concentration gives larger channel stress, but does not change layout sensitivity. Increased lateral etching leads to higher stress, as well as to reduced layout sensitivity. In small-size transistors, there exists an optimal recess depth, beyond which the stress in the channel will not increase further. For isolated transistor structures, the interaction between Si1-x Gex and the isolating oxide can even lead to stress reduction when the recess depth is increased. When technology advances, active-area dimensions will be scaled together with gate lengths and widths. For typical sizes of advanced silicon CMOS Si1-xGe x S/D transistors, simulations indicate that the channel stress can be maintained in future technology nodes


IEEE Electron Device Letters | 2005

Performance improvement of tall triple gate devices with strained SiN layers

Nadine Collaert; A. De Keersgieter; K.G. Anil; Rita Rooyackers; G. Eneman; M. Goodwin; Brenda Eyckens; Erik Sleeckx; J.-F. de Marneffe; K. De Meyer; P. Absil; M. Jurczak; S. Biesemans

In this letter, we investigate the influence of tensile and compressive SiN layers on the device performance of triple-gate devices with 60-nm fin height and fin widths down to 35 nm. It will be shown that even for narrow fin devices, the nMOS performance improvement can be as high as 20% with tensile strained layers. The improvement seen for pMOS is lower, about 10%. Next to that both compressive as well as tensile SiN layers can increase the pMOS on-state current.


international soi conference | 2008

Comparison of scaled floating body RAM architectures

Nadine Collaert; M. Rosmeulen; M. Rakowskia; Rita Rooyackers; Liesbeth Witters; A. Veloso; J. Van Houdt; M. Jurczak

In this work, we have compared different FB-RAM architectures. Whereas highly doped PDSOI devices show high programming window and retention times for long channel devices, the SOI FinFET devices with WFIN=25 nm can be scaled down to LG=50 nm while still maintaining high cell margins and retention times. For the latter devices optimization of the write and especially read bias conditions is needed.

Collaboration


Dive into the Rita Rooyackers's collaboration.

Top Co-Authors

Avatar

Nadine Collaert

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Anne Vandooren

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Aaron Thean

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Anne S. Verhulst

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Malgorzata Jurczak

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Cor Claeys

Japan Atomic Energy Research Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge