Takeshi Kajiyama
Toshiba
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Takeshi Kajiyama.
international solid-state circuits conference | 2002
Takashi Ohsawa; Katsuyuki Fujita; Tomoki Higashi; Yoshihisa Iwata; Takeshi Kajiyama; Yoshiyuki Asao; Kazumasa Sunouchi
A 512 kb DRAM has a 7F/sup 2/ one-transistor gain cell (F=0.18 /spl mu/m) on SOI. The array driving method makes selective write possible. Basic operation is verified by device simulation and hardware measurement. Simulations show 40 ns access time. Non-destructive readout and Cb/Cs-free signal development improve cell efficiency.
international solid-state circuits conference | 2010
Kenji Tsuchida; Tsuneo Inaba; Katsuyuki Fujita; Yoshihiro Ueda; Takafumi Shimizu; Yoshiaki Asao; Takeshi Kajiyama; Masayoshi Iwayama; Kuniaki Sugiura; Sumio Ikegawa; Tatsuya Kishi; Tadashi Kai; Minoru Amano; Naoharu Shimomura; Hiroaki Yoda; Yohji Watanabe
In order to realize a sub-Giga bit scale NVRAM, the novel MRAM based on the spin-transfer-torque (STT) switching has been intensively investigated due to its excellent scalability compared with a conventional magnetic field induce switching MRAM [1]. However, the memory cell size of STT-MRAM reported so far is still over 1µm2, and the memory capacity is limited to 32Mbit even in almost 100mm2 die size [2]. The large cell size is due to the large switching current of MRAM cells. In order to reduce the cell size, we have proposed the perpendicular tunnel magnetoresistance (P-TMR) device, and have confirmed its high potential to achieve lower switching current [3]. In this paper, a 64Mb STTMRAM with the P-TMR device having the circuit techniques to maximize operational margin is described.
Japanese Journal of Applied Physics | 2009
Kuniaki Sugiura; Shigeki Takahashi; Minoru Amano; Takeshi Kajiyama; Masayoshi Iwayama; Yoshiaki Asao; Naoharu Shimomura; Tatsuya Kishi; Sumio Ikegawa; Hiroaki Yoda; Akihiro Nitayama
A spin transfer torque magnetoresistive random access memory (STT-MRAM) is the most promising candidate for a non-volatile random access memory, because of its scalability, high-speed operation, and unlimited read/write endurance. An ion beam etching (IBE) is one of the promising etching methods for a magnetic tunnel junction (MTJ) of the STT-MRAM, because it has no after-corrosion and oxidation problems. In this work, we developed the multiple-step wafer-tilted IBE using computer calculation. Using optimized multiple-step IBE conditions, we fabricated MTJs without barrier-short defects.
Journal of Applied Physics | 2008
Masayoshi Iwayama; T. Kai; Masahiko Nakayama; Hisanori Aikawa; Yoshiaki Asao; Takeshi Kajiyama; Sumio Ikegawa; H. Yoda; Akihiro Nitayama
In this paper, the switching current distribution by spin transfer torque is investigated for CoFeB∕MgO∕CoFeB magnetic tunnel junctions (MTJs). The distribution of the spin transfer switching current for a MTJ with junction size of 85×110nm2 is 16% when the duration of applied pulse current is 5ms. In the case of magnetization reversal with magnetic field induced by current with 5ms pulse duration, the distribution of the switching field is 8.3%. According to our micromagnetic simulation, it is found that the spin transfer current switching seems to exhibit a nonuniform magnetization reversal process, whereas the magnetization switching by the magnetic field exhibits a uniform magnetization reversal process. This leads to the broader distribution related to the repeatability.In this paper, the switching current distribution by spin transfer torque is investigated for CoFeB∕MgO∕CoFeB magnetic tunnel junctions (MTJs). The distribution of the spin transfer switching current for a MTJ with junction size of 85×110nm2 is 16% when the duration of applied pulse current is 5ms. In the case of magnetization reversal with magnetic field induced by current with 5ms pulse duration, the distribution of the switching field is 8.3%. According to our micromagnetic simulation, it is found that the spin transfer current switching seems to exhibit a nonuniform magnetization reversal process, whereas the magnetization switching by the magnetic field exhibits a uniform magnetization reversal process. This leads to the broader distribution related to the repeatability.
international solid-state circuits conference | 2006
Yoshihisa Iwata; Kenji Tsuchida; Tsuneo Inaba; Yuui Shimizu; Ryousuke Takizawa; Yoshihiro Ueda; T. Sugibayashi; Yoshiaki Asao; Takeshi Kajiyama; Keiji Hosotani; Sumio Ikegawa; Tadashi Kai; M. Nakayama; S. Tahara; Hiroaki Yoda
A 16Mb MRAM based on 0.13mum CMOS and 0.24mum MRAM process achieves a 34ns asynchronous access and 100MHz synchronous operation, compatible with pseudo-SRAM for mobile applications. By implementation of FORK wiring scheme, the cell efficiency is raised to 39.9% and the disturb robustness of half-selection state is improved
ieee international magnetics conference | 2006
Kenichi Shimura; Norikazu Ohshima; Sadahiko Miura; Ryusuke Nebashi; Toshiyasu Suzuki; Hiromitsu Hada; S. Tahara; Hisanori Aikawa; Tomomasa Ueda; Takeshi Kajiyama; H. Yoda
We fabricated toggle magnetic random access memories with clad writing lines. First, we evaluated the structures and magnetic properties of sputter-deposited cladding layers. The substrate bias during the deposition affected not only the sidewall coverage, but also the crystallinity and magnetic properties of the cladding. The optimized clad lines reduced the writing current to as low as 50% of that of unclad lines. Moreover, the writing current deviation divided by the average current of magnetic tunnel junction cells with clad lines was as low as that with unclad lines. Using the optimized clad lines, we constructed memory arrays with a large operating margin and reduced switching current
IEEE Transactions on Magnetics | 2006
Hiroaki Yoda; Tadashi Kai; Tsuneo Inaba; Yoshihisa Iwata; Naoharu Shimomura; Sumio Ikegawa; Kenji Tsuchida; Yoshiaki Asao; Tatsuya Kishi; Tomomasa Ueda; Shigeki Takahashi; Makoto Nagamine; Takeshi Kajiyama; Masatoshi Yoshikawa; Minoru Amano; Toshihiko Nagase; Keiji Hosotani; Masahiko Nakayama; Yuui Shimizu; Hisanori Aikawa; Katsuya Nishiyama; Eiji Kitagawa; Ryousuke Takizawa; Yoshihiro Ueda; Masayoshi Iwayama; Kiyotaro Itagaki
Technologies for realizing high density MRAM were developed. First, new circuitry to lower the resistance of programming wires was developed. Second, both MTJ plane shape and cross-sectional structure were optimized to lower the programming current. Based on these two technologies, 16 Mb MRAM was designed, fabricated with 130 nm CMOS process and 240 nm back end MTJ process. As a result, a 1.8 V power supply MRAM with 42.3% array efficiency was successfully demonstrated
Japanese Journal of Applied Physics | 2010
Daiichi Koide; Takeshi Kajiyama; Haruki Tokumaru; Yoshimichi Takano; Nobuaki Onagi; Yasutomo Aman; Kiyoshi Ohishi
We developed a prototype of a flexible optical disk (FOD) drive with a mechanical stabilizer. We prepared the FOD that had a high recording sensitivity of a recording layer and had low byte error rates below 2 ×10-4 at speeds from 36 to 252 Mbps, and examined the recording of video data on the FOD and the drive. We could record and play a high-definition television (HDTV) video (MPEG-2, 422P@HL) seamlessly at 144 Mbps over the entire area of the FOD and the FOD drive with broadcast video systems. We confirmed that the FOD and the FOD drive can record and play HDTV signals for professional broadcast use.
international reliability physics symposium | 2007
Keiji Hosotani; Yoshiaki Asao; Makoto Nagamine; Tomomasa Ueda; Hisanori Aikawa; Naoharu Shimomura; Sumio Ikegawa; Takeshi Kajiyama; Shigeki Takahashi; Akihiro Nitayama; Hiroaki Yoda
Study of the reliability of ultra-thin MgO tunneling barriers for spin transfer switching magnetoresistive random access memory (MRAM) revealed MgO to be an excellent film with little resistance drift. Precise control of CoFeB/MgO/CoFeB interface was found to be important for making highly reliable tunneling barriers.
Japanese Journal of Applied Physics | 2013
Daiichi Koide; Takeshi Kajiyama; Ryuji Sato; Haruki Tokumaru; Yoshimichi Takano; Kiyoshi Ohishi
We propose a near-field optical recording flexible optical disk (NFR-FOD) for high-density recording at a high data transfer rate. We built a prototype high-density NFR-FOD that had a track pitch of 0.16 µm and we stacked some recording layers on a thin substrate that was 0.1 mm thick. We rotated the NFR-FOD closing the mechanical stabilizer on a drive system with less than 10 µmp–p axial run-out and achieved precise gap servo operation at a high rotational speed. We demonstrated near-field optical recording with a solid immersion lens with a numerical aperture (NA) of 1.84 on the NFR-FOD. The NFR-FOD has a fourfold higher recording density than the current Blu-ray disc, corresponding to a capacity of 100 Gbytes per layer, and a high data transfer rate of 250 Mbps, while rotating at half the speed.