Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Uday Shah is active.

Publication


Featured researches published by Uday Shah.


symposium on vlsi technology | 2006

Tri-Gate Transistor Architecture with High-k Gate Dielectrics, Metal Gates and Strain Engineering

Jack T. Kavalieros; Brian S. Doyle; Suman Datta; Gilbert Dewey; Mark L. Doczy; Ben Jin; Dan Lionberger; Matthew V. Metz; Marko Radosavljevic; Uday Shah; Nancy M. Zelick; Robert S. Chau

We have combined the benefits of the fully depleted tri-gate transistor architecture with high-k gate dielectrics, metal gate electrodes and strain engineering. High performance NMOS and PMOS trigate transistors are demonstrated with IDSAT=1.4 mA/mum and 1.1 mA/mum respectively (IOFF=100nA/mum, VCC =1.1V and LG=40nm) with excellent short channel effects (SCE)-DIBL and subthreshold swing, DeltaS. The contributions of strain, the lang100rang vs. lang110rang substrate orientations, high-k gate dielectrics, and low channel doping are investigated for a variety of channel dimensions and FIN profiles. We observe no evidence of early parasitic corner transistor turn-on in the current devices which can potentially degrade ION-IOFF and DeltaS


international electron devices meeting | 2009

Advanced high-K gate dielectric for high-performance short-channel In 0.7 Ga 0.3 As quantum well field effect transistors on silicon substrate for low power logic applications

Marko Radosavljevic; Benjamin Chu-Kung; S. Corcoran; Gilbert Dewey; Mantu K. Hudait; J. M. Fastenau; J. Kavalieros; W. K. Liu; D. Lubyshev; Matthew Hillsboro Metz; K. Millard; Niloy Mukherjee; Uday Shah; Robert S. Chau

This paper describes integration of an advanced composite high-K gate stack (4nm TaSiO<inf>x</inf>-2nm InP) in the In<inf>0.7</inf>Ga<inf>0.3</inf>As quantum-well field effect transistor (QWFET) on silicon substrate. The composite high-K gate stack enables both (i) thin electrical oxide thickness (t<inf>OXE</inf>) and low gate leakage (J<inf>G</inf>) and (ii) effective carrier confinement and high effective carrier velocity (V<inf>eff</inf>) in the QW channel. The L<inf>G</inf>=75nm In<inf>0.7</inf>Ga<inf>0.3</inf>As QWFET on Si with this composite high-K gate stack achieves high transconductance of 1750µS/µm and high drive current of 0.49mA/µm at V<inf>DS</inf>=0.5V.


international electron devices meeting | 2011

Electrostatics improvement in 3-D tri-gate over ultra-thin body planar InGaAs quantum well field effect transistors with high-K gate dielectric and scaled gate-to-drain/gate-to-source separation

Marko Radosavljevic; Gilbert Dewey; Dipanjan Basu; J. Boardman; Benjamin Chu-Kung; J. M. Fastenau; S. Kabehie; J. Kavalieros; Van H. Le; W. K. Liu; D. Lubyshev; Matthew Hillsboro Metz; K. Millard; Niloy Mukherjee; L. Pan; Ravi Pillarisetty; Uday Shah; Han Wui Then; Robert S. Chau

In this work, 3-D Tri-gate and ultra-thin body planar InGaAs quantum well field effect transistors (QWFETs) with high-K gate dielectric and scaled gate-to-source/gate-to-drain (LSIDE) have been fabricated and compared. For the first time, 3-D Tri-gate InGaAs devices demonstrate electrostatics improvement over the ultra-thin (QW thickness, TQW=10nm) body planar InGaAs device due to (i) narrow fin width (WFIN) of 30nm and (ii) high quality high-K gate dielectric interface on the InGaAs fin. Additionally, the 3-D Tri-gate InGaAs devices in this work achieve the best electrostatics, as evidenced by the steepest SS and the smallest DIBL, ever reported for any high-K III–V field effect transistor. The results in this work show that the 3-D Tri-gate device architecture is an effective way to improve the scalability of III–V FETs for future low power logic applications.


international electron devices meeting | 2010

Non-planar, multi-gate InGaAs quantum well field effect transistors with high-K gate dielectric and ultra-scaled gate-to-drain/gate-to-source separation for low power logic applications

Marko Radosavljevic; Gilbert Dewey; J. M. Fastenau; J. Kavalieros; Roza Kotlyar; Benjamin Chu-Kung; W. K. Liu; D. Lubyshev; Matthew Hillsboro Metz; K. Millard; Niloy Mukherjee; L. Pan; Ravi Pillarisetty; Uday Shah; Robert S. Chau

In this work, non-planar, multi-gate InGaAs quantum well field effect transistors (QWFETs) with high-K gate dielectric and ultra-scaled gate-to-drain and gate-to-source separations (LSIDE) of 5nm are reported for the first time. The high-K gate dielectric formed on this non-planar device structure has the expected thin TOXE of 20.5Å with low JG, and high quality gate dielectric interface. The simplified S/D scheme is needed for the non-planar architecture while achieving significant reduction in parasitic resistance. Compared to the planar high-K InGaAs QWFET with similar TOXE, the non-planar, multi-gate InGaAs QWFET shows significantly improved electrostatics due to better gate control. The results of this work show that non-planar, multi-gate device architecture is an effective way to improve the scalability of III–V QWFETs for low power logic applications.


international electron devices meeting | 2010

High mobility strained germanium quantum well field effect transistor as the p-channel device option for low power (Vcc = 0.5 V) III–V CMOS architecture

Ravi Pillarisetty; Benjamin Chu-Kung; S. Corcoran; Gilbert Dewey; Jack T. Kavalieros; Harold W. Kennel; Roza Kotlyar; Van H. Le; D. Lionberger; Matthew V. Metz; Niloy Mukherjee; Junghyo Nah; Marko Radosavljevic; Uday Shah; Sherry R. Taft; Han Wui Then; Nancy M. Zelick; Robert S. Chau

In this article we demonstrate a Ge p-channel QWFET with scaled TOXE = 14.5Å and mobility of 770 cm2/V*s at ns =5×1012 cm−2 (charge density in the state-of-the-art Si transistor channel at Vcc = 0.5V). For thin TOXE &#60; 40 Å, this represents the highest hole mobility reported for any Ge device and is 4× higher than state-of-the-art strained silicon. The QWFET architecture achieves high mobility by incorporating biaxial strain and eliminating dopant impurity scattering. The thin TOXE was achieved using a Si cap and a low Dt transistor process, which has a low oxide interface Dit. Parallel conduction in the SiGe buffer was suppressed using a phosphorus junction layer, allowing healthy subthreshold slope in Ge QWFET for the first time. The Ge QWFET achieves an intrinsic Gmsat which is 2× higher than the InSb p-channel QWFET [3]. These results suggest the Ge QWFET is a viable p-channel option for non-silicon CMOS.


international electron devices meeting | 2006

Floating Body Cell with Independently-Controlled Double Gates for High Density Memory

Ibrahim Ban; Uygar E. Avci; Uday Shah; Chris E. Barns; David L. Kencke; Peter L. D. Chang

An aggressively scaled, self-aligned, independently controlled double-gate floating body cell (IDG FBC) is reported. This structure eases the scaling constraints of other FBC memory devices proposed to date. Enhanced memory performance has been demonstrated owing to the independent back gate with thin oxide and thin Si fin. Memory devices with 85-nm Lg and 30-nm fin widths (Z) have been shown to exhibit better memory characteristics at a lower voltage than alternative FBC structures at comparable dimensions. Design, fabrication, operation, and scalability of IDG FBC devices are discussed


Journal of Vacuum Science & Technology B | 2008

Improvement in linewidth roughness by postprocessing

Manish Chandhok; Kent Frasure; E. Steve Putna; Todd R. Younkin; Uday Shah; Wang Yueh

In order to meet the linewidth roughness (LWR) requirements for the 16nm node, postprocessing methods need to be investigated to reduce the LWR after the lithography step. We present the results of five different techniques applied to a single extreme ultraviolet photoresist. The results show that rinse has the most promise in achieving the nearly two time LWR improvement needed. However, other techniques such as etch/trim, hardbake, vapor smoothing, and ozonation give at least 10%–20% LWR reduction and could be further optimized. Some of the physical based techniques which melt the photoresist reduce the midspatial frequency (50–10nm period) roughness, whereas chemical based techniques reduce the low order spatial frequencies (∼500–50nm period). Hence, a combination of techniques may be the ultimate solution.


symposium on vlsi technology | 2010

Silicon on replacement insulator (SRI) floating body cell (FBC) memory

Seiyon Kim; Ricky Tseng; Ben Jin; Uday Shah; Ibrahim Ban; Uygar E. Avci; Peter L. D. Chang

A 15-nm node floating body cell (FBC) memory was demonstrated utilizing silicon on replacement insulator (SRI) technology on bulk substrate. Highly selective SiGe etch and nano-scale anchors enabled the fabrication of silicon on thin replacement oxide of 12 nm. The memory characteristics show a memory signal of 7 µA and disturb retention time of 20 ms for a 51-nm gate length and 77-nm width device. This is the best FBC memory performance reported on bulk substrate.


Advances in Resist Technology and Processing XX | 2003

Intel benchmarking and process integration of 157-nm resists

James M. Powers; Jeanette M. Roberts; Paul Zimmerman; Robert P. Meagley; E. Steve Putna; Uday Shah

Intel’s recent 157nm fluoropolymer photoresist development is described, including the benchmarking of photoresist patterning and the suitability of resists in typical Intel etch processes. The imaging results show that the new ultra-low absorbance resists (absorbance <1/μm) show great promise for meeting the 65nm-node ITRS targets. The materials also show good etch resistance when exposed to SiO2, Si3N4 and SixOyNz dry etch chemistries.


Archive | 2004

Nonplanar transistors with metal gate electrodes

Justin K. Brask; Brian S. Doyle; Jack T. Kavalieros; Mark L. Doczy; Uday Shah; Robert S. Chau

Collaboration


Dive into the Uday Shah's collaboration.

Researchain Logo
Decentralizing Knowledge