Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yiu-Hing Chan is active.

Publication


Featured researches published by Yiu-Hing Chan.


design automation conference | 2003

Physical synthesis methodology for high performance microprocessors

Yiu-Hing Chan; Prabhakar Kudva; Lisa B. Lacey; Gregory A. Northrop; Thomas Edward Rosser

Integrated logic synthesis and physical design (physical synthesis) continues to play a very important role in high performance microprocessor design methodologies. In this paper, we present the integrated physical synthesis timing closure methodology used in the current generation microprocessors. Physical synthesis techniques were aggressively used as part of logic and placement optimizations for performance, power and area. The design turn around times were significantly reduced and timing convergence was consistently acheived.


IEEE Journal of Solid-state Circuits | 2012

Circuit and Physical Design Implementation of the Microprocessor Chip for the zEnterprise System

James D. Warnock; Yiu-Hing Chan; Sean M. Carey; Huajun Wen; Patrick J. Meaney; Guenter Gerwig; Howard H. Smith; Yuen H. Chan; John S. Davis; Paul A. Bunce; Antonio R. Pelella; Daniel Rodko; Pradip Patel; Thomas Strach; Doug Malone; Frank Malgioglio; José Luis Neves; David L. Rude; William V. Huott

This paper describes the circuit and physical design features of the z196 processor chip, implemented in a 45 nm SOI technology. The chip contains 4 super-scalar, out-of-order processor cores, running at 5.2 GHz, on a die with an area of 512 mm2 containing an estimated 1.4 billion transistors. The core and chip design methodology and specific design features are presented, focusing on techniques used to enable high-frequency operation. In addition, chip power, IR drop, and supply noise are discussed, being key design focus areas. The chips ground-breaking RAS features are also described, engineered for maximum reliability and system stability.


european solid-state circuits conference | 2006

A 5GHz+ 128-bit Binary Floating-Point Adder for the POWER6 Processor

Xiao Yan Yu; Yiu-Hing Chan; Brian W. Curran; Eric M. Schwarz; Michael R. Kelly; Bruce M. Fleischer

A fast 128-bit end-around carry adder is designed and fabricated as part of the POWER6 floating-point unit in a 65nm SOI process technology. Efficient use of static circuits and careful balance of the look-ahead tree enable our floating point design to operate beyond 5GHz with 1.1 V supply


IEEE Journal of Solid-state Circuits | 2014

Circuit and Physical Design of the zEnterprise™ EC12 Microprocessor Chips and Multi-Chip Module

James D. Warnock; Yuen H. Chan; Hubert Harrer; Sean M. Carey; Gerard M. Salem; Doug Malone; Ruchir Puri; Jeffrey A. Zitz; Adam R. Jatkowski; Gerald Strevig; Ayan Datta; Anne E. Gattiker; Aditya Bansal; Guenter Mayer; Yiu-Hing Chan; Mark D. Mayo; David L. Rude; Leon J. Sigal; Thomas Strach; Howard H. Smith; Huajun Wen; Pak-Kin Mak; Chung-Lung Kevin Shum; Donald W. Plass; Charles F. Webb

This work describes the circuit and physical design implementation of the processor chip (CP), level-4 cache chip (SC), and the multi-chip module at the heart of the EC12 system. The chips were implemented in IBMs high-performance 32nm high-k/metal-gate SOI technology. The CP chip contains 6 super-scalar, out-of-order processor cores, running at 5.5 GHz, while the SC chip contains 192 MB of eDRAM cache. Six CP chips and two SC chips are mounted on a high-performance glass-ceramic substrate, which provides high-bandwidth, low-latency interconnections. Various aspects of the design are explored in detail, with most of the focus on the CP chip, including the circuit design implementation, clocking, thermal modeling, reliability, frequency tuning, and comparison to the previous design in 45nm technology.


international solid-state circuits conference | 2015

4.1 22nm Next-generation IBM System z microprocessor

James D. Warnock; Brian W. Curran; John Badar; Gregory J. Fredeman; Donald W. Plass; Yuen H. Chan; Sean M. Carey; Gerard M. Salem; Friedrich Schroeder; Frank Malgioglio; Guenter Mayer; Christopher J. Berry; Michael H. Wood; Yiu-Hing Chan; Mark D. Mayo; John Mack Isakson; Charudhattan Nagarajan; Tobias Werner; Leon J. Sigal; Ricardo H. Nigaglioni; Mark Cichanowski; Jeffrey A. Zitz; Matthew M. Ziegler; Tim Bronson; Gerald Strevig; Daniel M. Dreps; Ruchir Puri; Douglas J. Malone; Dieter Wendel; Pak-Kin Mak

The next-generation System z design introduces a new microprocessor chip (CP) and a system controller chip (SC) aimed at providing a substantial boost to maximum system capacity and performance compared to the previous zEC12 design in 32nm [1,2]. As shown in the die photo, the CP chip includes 8 high-frequency processor cores, 64MB of eDRAM L3 cache, interface IOs (“XBUS”) to connect to two other processor chips and the L4 cache chip, along with memory interfaces, 2 PCIe Gen3 interfaces, and an I/O bus controller (GX). The design is implemented on a 678 mm2 die with 4.0 billion transistors and 17 levels of metal interconnect in IBMs high-performance 22nm high-x CMOS SOI technology [3]. The SC chip is also a 678 mm2 die, with 7.1 billion transistors, running at half the clock frequency of the CP chip, in the same 22nm technology, but with 15 levels of metal. It provides 480 MB of eDRAM L4 cache, an increase of more than 2× from zEC12 [1,2], and contains an 18 MB eDRAM L4 directory, along with multi-processor cache control/coherency logic to manage inter-processor and system-level communications. Both the CP and SC chips incorporate significant logical, physical, and electrical design innovations.


Ibm Journal of Research and Development | 2007

Power-constrained high-frequency circuits for the IBM POWER6 microprocessor

Brian W. Curran; Eric Fluhr; Jose Angel Paredes; Leon J. Sigal; Joshua Friedrich; Yiu-Hing Chan; Charlie Hwang

The IBM POWER6™ microprocessor is a high-frequency (>5-G Hz) microprocessor fabricated in the IBM 65-nm silicon-on-insulator (SOI) complementary metal-oxide semiconductor (CMOS) process technology. This paper describes the circuit, physical design, clocking, timing, power, and hardware characterization challenges faced in the pursuit of this industry-leading frequency. Traditional high-power, high-frequency techniques were abandoned in favor of more-power-efficient circuit design methodologies. The hardware frequency and power characterization are reviewed.


international solid-state circuits conference | 2013

5.5GHz system z microprocessor and multi-chip module

James D. Warnock; Yuen H. Chan; Hubert Harrer; David L. Rude; Ruchir Puri; Sean M. Carey; Gerard M. Salem; Guenter Mayer; Yiu-Hing Chan; Mark D. Mayo; Adam R. Jatkowski; Gerald Strevig; Leon J. Sigal; Ayan Datta; Anne E. Gattiker; Aditya Bansal; Doug Malone; Thomas Strach; Huajun Wen; Pak-Kin Mak; Chung-Lung Kevin Shum; Donald W. Plass; Charles F. Webb

The new System z microprocessor chip (“CP chip”) features a high-frequency processor core running at 5.5GHz in a 32nm high-κ CMOS technology [1], using 15 levels of metal. This chip is a successor to the 45nm product [2], with significant improvements made to the core and nest (i.e. the logic external to the cores) in order to increase the performance and throughput of the design. Also, special considerations were necessary to ensure robust circuit operation in the high-κ technology used for implementation. As seen in the die photo, the chip contains 6 processor cores (compared to 4 cores in the 45nm version), and a large shared 48MB DRAM L3 cache. Each core includes a pair of data and instruction L2 SRAM caches of 1MB each. In addition, the chip contains a memory control unit (MCU), an I/O bus controller (GX), and two sets of interfaces to the L4 cache chips (also in 32nm technology). The CP chip occupies 598 mm2, contains about 2.75B transistors, and has 1071 signal IOs.


signal processing systems | 2010

A 270ps 20mW 108-bit End-around Carry Adder for Multiply-Add Fused Floating Point Unit

Xiao Yan Zhang; Yiu-Hing Chan; Robert K. Montoye; Leon J. Sigal; Eric M. Schwarz; Michael R. Kelly

A power and area efficient 108-bit end-around carry adder is implemented using IBM 65nm SOI technology. The adder is used for a multiply-add fused (MAF) floating point unit. Careful balance of the adder structure and structure-aware layout techniques enabled this adder to have a latency of 270ps at power consumption of 20mW with 1V supply.


international solid-state circuits conference | 2001

A 1.1 GHz first 64 b generation 2900 microprocessor

Brian W. Curran; Peter J. Camporese; Sean M. Carey; Yuen Chan; Yiu-Hing Chan; R. Clemen; R. Crea; Dale E. Hoffman; T. Koprowski; Mark D. Mayo; T. McPherson; Gregory A. Northrop; Leon J. Sigal; Howard H. Smith; F. Tanzi; P. Williams

The first 64 b S/390 microprocessor implemented in a 0.18 /spl mu/m, 7-level copper interconnect bulk CMOS process, runs operating system and applications at 1.1 GHz. The frequency is achieved with interconnect width and repeater optimization, selective use of low-Vt devices, tapered library gates, and improved synthesis and circuit tuning algorithms.


Ibm Journal of Research and Development | 2015

IBM z13 circuit design and methodology

James D. Warnock; C. Berry; M. H. Wood; Leon J. Sigal; Yuen H. Chan; G. Mayer; Mark D. Mayo; Yiu-Hing Chan; F. Malgioglio; G. Strevig; C. Nagarajan; Sean M. Carey; Gerard M. Salem; F. Schroeder; Howard H. Smith; D. Phan; Ricardo H. Nigaglioni; Thomas Strach; M. M. Ziegler; N. Fricke; K. Lind; J. L. Neves; S. H. Rangarajan; J. P. Surprise; J. M. Isakson; J. Badar; D. Malone; Donald W. Plass; A. Aipperspach; Dieter Wendel

The two chips at the heart of the IBM z13™ system include a processor chip (referred to as the CP or Central Processor chip) and an L4 (Level 4) cache chip (referred to as the SC or System Controller chip), each 678 mm2 in area. The CP and SC chips were implemented with approximately 4 billion (4 × 109) and 7.1 billion transistors, respectively, in IBMs 22-nm SOI (silicon-on-insulator) technology, supporting eDRAM (embedded dynamic random access memory), and with up to 17 levels of metal available. In this paper, we discuss aspects of the circuit and physical design of these chips, including both digital logic and custom array implementation. In addition, we describe the design analysis methodology, along with some of the checks needed to ensure a robust, reliable, and high-frequency product.

Researchain Logo
Decentralizing Knowledge