Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yoshie Harada is active.

Publication


Featured researches published by Yoshie Harada.


Nature Communications | 2012

Intracellular temperature mapping with a fluorescent polymeric thermometer and fluorescence lifetime imaging microscopy

Kohki Okabe; Noriko Inada; Chie Gota; Yoshie Harada; Takashi Funatsu; Seiichi Uchiyama

Cellular functions are fundamentally regulated by intracellular temperature, which influences biochemical reactions inside a cell. Despite the important contributions to biological and medical applications that it would offer, intracellular temperature mapping has not been achieved. Here we demonstrate the first intracellular temperature mapping based on a fluorescent polymeric thermometer and fluorescence lifetime imaging microscopy. The spatial and temperature resolutions of our thermometry were at the diffraction limited level (200 nm) and 0.18–0.58 °C. The intracellular temperature distribution we observed indicated that the nucleus and centrosome of a COS7 cell, both showed a significantly higher temperature than the cytoplasm and that the temperature gap between the nucleus and the cytoplasm differed depending on the cell cycle. The heat production from mitochondria was also observed as a proximal local temperature increase. These results showed that our new intracellular thermometry could determine an intrinsic relationship between the temperature and organelle function.


Journal of Molecular Biology | 1990

Mechanochemical coupling in actomyosin energy transduction studied by in vitro movement assay

Yoshie Harada; Katsuhiko Sakurada; Toshiaki Aoki; David D. Thomas; Toshio Yanagida

In order to study the mechanochemical coupling in actomyosin energy transduction, the sliding distance of an actin filament induced by one ATP hydrolysis cycle was obtained by using an in vitro movement assay that permitted quantitative and simultaneous measurements of (1) the movements of single fluorescently labeled actin filaments on myosin bound to coverslip surfaces and (2) the ATPase rates. The sliding distance was determined as (the working stroke time in one ATPase cycle, tws) x (the filament velocity, v). tws was obtained from the ATPase turnover rate of myosin during the sliding (kt), the ATP hydrolysis time (delta t) and the ON-rate at which myosin heads enter into the working stroke state when they encounter actin (kON); tws approximately 1/kt-delta t-1/kON. kt was estimated from the ATPase rates of the myosin-coated surface during the sliding of actin filaments. delta t has been determined as less than 1/100 per second, kON was estimated by analyzing the movements of very short (40 nm) filaments. The resulting sliding distance during one ATP hydrolysis cycle near zero load was greater than 100 nm, which is about ten times longer than that expected for a single attachment-detachment cycle between an actin and a myosin head. This leads to the conclusion that the coupling between the ATPase and attachment-detachment cycles is not determined rigidly in a one-to-one fashion.


Journal of the American Chemical Society | 2009

Hydrophilic Fluorescent Nanogel Thermometer for Intracellular Thermometry

Chie Gota; Kohki Okabe; Takashi Funatsu; Yoshie Harada; Seiichi Uchiyama

The first methodology to measure intracellular temperature is described. A highly hydrophilic fluorescent nanogel thermometer developed for this purpose stays in the cytoplasm and emits stronger fluorescence at a higher temperature. Thus, intracellular temperature variations associated with biological processes can be monitored by this novel thermometer with a temperature resolution of better than 0.5 degrees C.


Biophysical Journal | 1999

Single-Molecule Imaging of RNA Polymerase-DNA Interactions in Real Time

Yoshie Harada; Takashi Funatsu; Katsuhiko Murakami; Yoshikazu Nonoyama; Akira Ishihama; Toshio Yanagida

Using total internal reflection fluorescence microscopy, we have directly observed individual interactions of single RNA polymerase molecules with a single molecule of lambda-phage DNA suspended in solution by optical traps. The interactions of RNA polymerase molecules were not homogeneous along DNA. They dissociated slowly from the positions of the promoters and sequences common to promoters at a rate of approximately 0.66 s-1, which was more than severalfold smaller than the rate at other positions. The association rate constant for the slow dissociation sites was 9.2 x 10(2) bp-1 M-1 s-1. The frequency of binding to the fast dissociation sites was dependent on the A-T composition; it was larger in the AT-rich regions than in the GC-rich regions. RNA polymerase molecules on the fast dissociation sites underwent linear diffusion (sliding) along DNA. The binding to the slow dissociation sites was greatly enhanced when DNA was released to a relaxed state, suggesting that the binding depended on the strain exerted on the DNA. The present method is potentially applicable to the examination of a wide variety of protein-nucleic acid interactions, especially those involved in the process of transcription.


Nature | 1999

Tying a molecular knot with optical tweezers

Yasuharu Arai; Ryohei Yasuda; Ken Ichirou Akashi; Yoshie Harada; Hidetake Miyata; Kazuhiko Kinosita; Hiroyasu Itoh

Filamentous structures are abundant in cells. Relatively rigid filaments, such as microtubules and actin, serve as intracellular scaffolds that support movement and force, and their mechanical properties are crucial to their function in the cell. Some aspects of the behaviour of DNA, meanwhile, depend critically on its flexibility—for example, DNA-binding proteins can induce sharp bends in the helix. The mechanical characterization of such filaments has generally been conducted without controlling the filament shape, by the observation of thermal motions or of the response to external forces or flows. Controlled buckling of a microtubule has been reported, but the analysis of the buckled shape was complicated. Here we report the continuous control of the radius of curvature of a molecular strand by tying a knot in it, using optical tweezers to manipulate the strands ends. We find that actin filaments break at the knot when the knot diameter falls below 0.4 µm. The pulling force at breakage is around 1 pN, two orders of magnitude smaller than the tensile stress of a straight filament. The flexural rigidity of the filament remained unchanged down to this diameter. We have also knotted a single DNA molecule, opening up the possibility of studying curvature-dependent interactions with associated proteins. We find that the knotted DNA is stronger than actin.


Nature | 2001

Direct observation of DNA rotation during transcription by Escherichia coli RNA polymerase.

Yoshie Harada; Osamu Ohara; Akira Takatsuki; Hiroyasu Itoh; Nobuo Shimamoto; Kazuhiko Kinosita

Helical filaments driven by linear molecular motors are anticipated to rotate around their axis, but rotation consistent with the helical pitch has not been observed. 14S dynein and non-claret disjunctional protein (ncd) rotated a microtubule more efficiently than expected for its helical pitch, and myosin rotated an actin filament only poorly. For DNA-based motors such as RNA polymerase, transcription-induced supercoiling of DNA supports the general picture of tracking along the DNA helix. Here we report direct and real-time optical microscopy measurements of rotation rate that are consistent with high-fidelity tracking. Single RNA polymerase molecules attached to a glass surface rotated DNA for >100 revolutions around the right-handed screw axis of the double helix with a rotary torque of >5 pN nm. This real-time observation of rotation opens the possibility of resolving individual transcription steps.


Biophysical Journal | 1996

Multiple- and single-molecule analysis of the actomyosin motor by nanometer-piconewton manipulation with a microneedle: unitary steps and forces.

Akihiko Ishijima; Hiroaki Kojima; Hideo Higuchi; Yoshie Harada; Takashi Funatsu; Toshio Yanagida

We have developed a new technique for measurements of piconewton forces and nanometer displacements in the millisecond time range caused by actin-myosin interaction in vitro by manipulating single actin filaments with a glass microneedle. Here, we describe in full the details of this method. Using this method, the elementary events in energy transduction by the actomyosin motor, driven by ATP hydrolysis, were directly recorded from multiple and single molecules. We found that not only the velocity but also the force greatly depended on the orientations of myosin relative to the actin filament axis. Therefore, to avoid the effects of random orientation of myosin and association of myosin with an artificial substrate in the surface motility assay, we measured forces and displacements by myosin molecules correctly oriented in single synthetic myosin rod cofilaments. At a high myosin-to-rod ratio, large force fluctuations were observed when the actin filament interacted in the correct orientation with a cofilament. The noise analysis of the force fluctuations caused by a small number of heads showed that the myosin head generated a force of 5.9 +/- 0.8 pN at peak and 2.1 +/- 0.4 pN on average over the whole ATPase cycle. The rate constants for transitions into (k+) and out of (k-) the force generation state and the duty ratio were 12 +/- 2 s-1, and 22 +/- 4 s-1, and 0.36 +/- 0.07, respectively. The stiffness was 0.14 pN nm-1 head-1 for slow length change (100 Hz), which would be approximately 0.28 pN nm-1 head-1 for rapid length change or in rigor. At a very low myosin-to-rod ratio, distinct actomyosin attachment, force generation (the power stroke), and detachment events were directly detected. At high load, one power stroke generated a force spike with a peak value of 5-6 pN and a duration of 50 ms (k(-)-1), which were compatible with those of individual myosin heads deduced from the force fluctuations. As the load was reduced, the force of the power stroke decreased and the needle displacement increased. At near zero load, the mean size of single displacement spikes, i.e., the unitary steps caused by correctly oriented myosin, which were corrected for the stiffness of the needle-to-myosin linkage and the randomizing effect by the thermal vibration of the needle, was approximately 20 nm.


Nano Letters | 2012

Real-Time Background-Free Selective Imaging of Fluorescent Nanodiamonds in Vivo

Ryuji Igarashi; Yohsuke Yoshinari; Hiroaki Yokota; Takuma Sugi; Fuminori Sugihara; Kazuhiro Ikeda; Hitoshi Sumiya; Shigenori Tsuji; Ikue Mori; Hidehito Tochio; Yoshie Harada; Masahiro Shirakawa

Recent developments of imaging techniques have enabled fluorescence microscopy to investigate the localization and dynamics of intracellular substances of interest even at the single-molecule level. However, such sensitive detection is often hampered by autofluorescence arising from endogenous molecules. Those unwanted signals are generally reduced by utilizing differences in either wavelength or fluorescence lifetime; nevertheless, extraction of the signal of interest is often insufficient, particularly for in vivo imaging. Here, we describe a potential method for the selective imaging of nitrogen-vacancy centers (NVCs) in nanodiamonds. This method is based on the property of NVCs that the fluorescence intensity sensitively depends on the ground state spin configuration which can be regulated by electron spin magnetic resonance. Because the NVC fluorescence exhibits neither photobleaching nor photoblinking, this protocol allowed us to conduct long-term tracking of a single nanodiamond in both Caenorhabditis elegans and mice, with excellent imaging contrast even in the presence of strong background autofluorescence.


The EMBO Journal | 2013

ParA-mediated plasmid partition driven by protein pattern self-organization

Ling Chin Hwang; Anthony G. Vecchiarelli; Yong-Woon Han; Michiyo Mizuuchi; Yoshie Harada; Barbara E. Funnell; Kiyoshi Mizuuchi

DNA segregation ensures the stable inheritance of genetic material prior to cell division. Many bacterial chromosomes and low‐copy plasmids, such as the plasmids P1 and F, employ a three‐component system to partition replicated genomes: a partition site on the DNA target, typically called parS, a partition site binding protein, typically called ParB, and a Walker‐type ATPase, typically called ParA, which also binds non‐specific DNA. In vivo, the ParA family of ATPases forms dynamic patterns over the nucleoid, but how ATP‐driven patterning is involved in partition is unknown. We reconstituted and visualized ParA‐mediated plasmid partition inside a DNA‐carpeted flowcell, which acts as an artificial nucleoid. ParA and ParB transiently bridged plasmid to the DNA carpet. ParB‐stimulated ATP hydrolysis by ParA resulted in ParA disassembly from the bridging complex and from the surrounding DNA carpet, which led to plasmid detachment. Our results support a diffusion‐ratchet model, where ParB on the plasmid chases and redistributes the ParA gradient on the nucleoid, which in turn mobilizes the plasmid.


Analytical Chemistry | 2008

Single-cell chemical lysis method for analyses of intracellular molecules using an array of picoliter-scale microwells.

Yasuhiro Sasuga; Tomoyuki Iwasawa; Kayoko Terada; Yoshihiro Oe; Hiroyuki Sorimachi; Osamu Ohara; Yoshie Harada

Analyzing the intracellular contents and enzymatic activities of single cells is important for studying the physiological and pathological activities at the cellular level. For this purpose, we developed a simple single-cell lysis method by using a dense array of microwells of 10-30-pL volume fabricated by poly(dimethylsiloxane) (PDMS) and a commercially available cell lysis reagent. To demonstrate the performance of this single-cell lysis method, we carried out two different assays at the single-cell level: detection of proteins by antibody conjugated microbeads and measurement of protease activity by fluorescent substrates. The results indicated that this method readily enabled us to monitor protein levels and enzymatic activities in a single cell. Because this method required only an array of PDMS microwells and a fluorescence microscope, the simplicity of this platform opens a way to explore the biochemical characteristics of single cells even by those who are not familiar with microfluidic technology.

Collaboration


Dive into the Yoshie Harada's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tomomi Tani

Marine Biological Laboratory

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge