Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yutaka Shiraishi is active.

Publication


Featured researches published by Yutaka Shiraishi.


Proceedings of SPIE | 2013

LPP-EUV light source development for high volume manufacturing lithography

Hakaru Mizoguchi; Hiroaki Nakarai; Tamotsu Abe; Takeshi Ohta; Krzysztof Nowak; Yasufumi Kawasuji; H. Tanaka; Yukio Watanabe; Tsukasa Hori; Takeshi Kodama; Yutaka Shiraishi; Tatsuya Yanagida; Tsuyoshi Yamada; Taku Yamazaki; Shinji Okazaki; Takashi Saitou

Since 2002, we have been developing a CO2-Sn-LPP EUV light source, the most promising solution as the 13.5 nm high power (>200 W) light source for HVM EUV lithography. Because of its high efficiency, power scalability and spatial freedom around plasma, we believe that the CO2-Sn-LPP scheme is the most feasible candidate as the light source for EUVL. By now, our group has proposed several unique original technologies such as CO2 laser driven Sn plasma generation, double laser pulse shooting for higher Sn ionization rate and higher CE, Sn debris mitigation with a magnetic field, and a hybrid CO2 laser system that is a combination of a short pulse oscillator and commercial cw-CO2 amplifiers. The theoretical and experimental data have clearly demonstrated the advantage of combining a laser beam at a wavelength of the CO2 laser system with Sn plasma to achieve high CE from driver laser pulse energy to EUV in-band energy. Combination of CO2 laser power and droplet generator improvements on new EUV chamber (Proto-2) enables stable EUV emission. EUV burst operation data shows stable average 10.2W(clean power @ I/F) EUV emission and maximum 20.3W(clean power @ I/F) was demonstrated. For future HVM the maximum of 4.7% CE with a 20 μm droplet are demonstrated by ps pre-pulse LPP. Also reported 40kW CO2 laser development project cooperate with Mitsubishi electric.


Proceedings of SPIE | 2015

Performance of one hundred watt HVM LPP-EUV source

Hakaru Mizoguchi; Hiroaki Nakarai; Tamotsu Abe; Krzysztof Nowak; Yasufumi Kawasuji; H. Tanaka; Yukio Watanabe; Tsukasa Hori; Takeshi Kodama; Yutaka Shiraishi; Tatsuya Yanagida; Georg Soumagne; Tsuyoshi Yamada; Taku Yamazaki; Shinji Okazaki; Takashi Saitou

We have been developing CO2-Sn-LPP EUV light source which is the most promising solution as the 13.5nm high power light source for HVM EUVL. Unique and original technologies such as: combination of pulsed CO2 laser and Sn droplets, dual wavelength laser pulses shooting, and mitigation with magnetic field, have been developed in Gigaphoton Inc. The theoretical and experimental data have clearly showed the advantage of our proposed strategy. Based on these data we are developing first practical source for HVM - “GL200E”. This data means 250W EUV power will be able to realize around 20kW level pulsed CO2 laser. We have reported engineering data from our recent test such around 43W average clean power, CE=2.0%, with 100kHz operation and other data 19). We have already finished preparation of higher average power CO2 laser more than 20kW at output power cooperate with Mitsubishi Electric Corporation 14). Recently we achieved 92W with 50kHz, 50% duty cycle operation 20). We have reported component technology progress of EUV light source system. We report promising experimental data and result of simulation of magnetic mitigation system in Proto #1 system. We demonstrated several data with Proto #2 system: (1) emission data of 140W in burst under 70kHz 50% duty cycle during 10 minutes. (2) emission data of 118W in burst under 60kHz 70% duty cycle during 10 minutes. (3) emission data of 42W in burst under 20kHz 50% duty cycle (10000pls/0.5ms OFF) during 3 hours (110Mpls). Also we report construction of Pilot #1 system. Final target is week level operation with 250W EUV power with CE=4%, more than 27kW CO2 laser power by the end of Q2 of 2015.


Proceedings of SPIE | 2016

Performance of new high-power HVM LPP-EUV source

Hakaru Mizoguchi; Hiroaki Nakarai; Tamotsu Abe; Krzysztof Nowak; Yasufumi Kawasuji; H. Tanaka; Yukio Watanabe; Tsukasa Hori; Takeshi Kodama; Yutaka Shiraishi; Tatsuya Yanagida; Tsuyoshi Yamada; Taku Yamazaki; Shinji Okazaki; Takashi Saitou

We have been developing CO2-Sn-LPP EUV light source which is the most promising solution as the 13.5nm high power light source for HVM EUVL since 2003. Unique original technologies such as; combination of pulsed CO2 laser and Sn droplets, dual wavelength laser pulse shooting and mitigation with magnetic field have been developed in Gigaphoton Inc.. The theoretical and experimental data have clearly showed the advantage of our proposed strategy. We demonstrated 108W EUV power (I/F clean in burst), 80 kHz, 24 hours stable operation at Proto#2 device. Based on these experimental data we are now constructing first practical source for HVM; “GL200E-Pilot#1”. Target of this device is 250 W EUV power by 27 kW pulsed CO2 driver laser system.


Proceedings of SPIE | 2014

Sub-hundred Watt operation demonstration of HVM LPP-EUV source

Hakaru Mizoguchi; Hiroaki Nakarai; Tamotsu Abe; Takeshi Ohta; Krzysztof Nowak; Yasufumi Kawasuji; H. Tanaka; Yukio Watanabe; Tsukasa Hori; Takeshi Kodama; Yutaka Shiraishi; Tatsuya Yanagida; Tsuyoshi Yamada; Taku Yamazaki; Shinji Okazaki; Takashi Saitou

Since 2002, we have been developing a CO2-Sn-LPP EUV light source, the most promising solution as the 13.5 nm high power (>200 W) light source for HVM EUV lithography. Because of its high efficiency, power scalability and spatial freedom around plasma. Our group has proposed several unique original technologies; 1) CO2 laser driven Sn plasma generation, 2) Double laser pulse shooting for higher Sn ionization rate and higher CE. 3) Sn debris mitigation with a magnetic field, 4) Hybrid CO2 laser system that is scalable with a combination of a short pulse oscillator and commercial cw-CO2 amplifiers. 5) High efficient out of band light reduction with grating structured C1 mirror. In past paper we demonstrated in small size (2Hz) experimental device, this experiment shoed the advantage of combining a laser beam at a wavelength of the CO2 laser system with Sn plasma to achieve high CE>4.7% (in maximum) from driver laser pulse energy to EUV in-band energy 1). In this paper we report the further updated results from last paper. (1) 20um droplets at 100kHz operation was successfully ejected by downsized nozzle and demonstrated dramatical improvement of debris on the collector mirror. We have been developing extension of high CE operation condition at 20kHz range, We have reported component technology progress of EUV light source system. (2)New generation collector mirror with IR reduction technology is equipped in mirror maker. (3)20kW CO2 laser amplifier system is demonstrated cooperate with Mitsubishi electric. (4) We develop new Proto #2 EUV LPP source system and demonstrated 200W EUV plasma power (43W EUV clean power at I/F ) at 100kHz operation was confirmed. (5) High conversion efficiency (CE) of 3.9% at 20kHz operation was confirmed in using pico-second pre-pulse laser. (6)Improvement of CO2 laser power from 8kW to 12kW is now on going by installation of new pre-amplifier. (7)Power-up scenario of HVM source is reported, target shipment of first customer beta LPP light source unit is 2015.


Advanced Optical Technologies | 2015

Performance of 100-W HVM LPP-EUV source

Hakaru Mizoguchi; Hiroaki Nakarai; Tamotsu Abe; Krzysztof Nowak; Yasufumi Kawasuji; H. Tanaka; Yukio Watanabe; Tsukasa Hori; Takeshi Kodama; Yutaka Shiraishi; Tatsuya Yanagida; Georg Soumagne; Tsuyoshi Yamada; Taku Yamazaki; Shinji Okazaki; Takashi Saitou

Abstract At Gigaphoton Inc., we have developed unique and original technologies for a carbon dioxide laser-produced tin plasma extreme ultraviolet (CO2-Sn-LPP EUV) light source, which is the most promising solution for high-power high-volume manufacturing (HVM) EUV lithography at 13.5 nm. Our unique technologies include the combination of a pulsed CO2 laser with Sn droplets, the application of dual-wavelength laser pulses for Sn droplet conditioning, and subsequent EUV generation and magnetic field mitigation. Theoretical and experimental data have clearly shown the advantage of our proposed strategy. Currently, we are developing the first HVM light source, ‘GL200E’. This HVM light source will provide 250-W EUV power based on a 20-kW level pulsed CO2 laser. The preparation of a high average-power CO2 laser (more than 20 kW output power) has been completed in cooperation with Mitsubishi Electric Corporation. Recently, we achieved 140 W at 50 kHz and 50% duty cycle operation as well as 2 h of operation at 100 W of power level. Further improvements are ongoing. We will report the latest status and the challenge to reach stable system operation of more than 100 W at about 4% conversion efficiency with 20-μm droplets and magnetic mitigation.


Proceedings of SPIE | 2016

100W EUV light-source key component technology update for HVM

Tsukasa Hori; Yasufumi Kawasuji; H. Tanaka; Yukio Watanabe; Yutaka Shiraishi; Tamotsu Abe; Takeshi Okamoto; Takeshi Kodama; Hiroaki Nakarai; Taku Yamazaki; Shinji Okazaki; Takashi Saitou; Hakaru Mizoguchi

Gigaphoton Inc. develops a high-power laser produced plasma extreme ultraviolet (LPP EUV) light source for high volume manufacturing which enables sub-10nm critical layer patterning for semiconductor device fabrication. A technology update of key components of a 100 W LPP-EUV light source is given in this paper. The key components efficiently produce a stable plasma and evacuate the tin debris from the EUV vessel with a magnetic debris mitigation system. The chosen technology guarantees therefore a high-power and long-life EUV light source system. Each component is described with updated data. The latest system performance results are also presented. They were obtained from our proto LPP-EUV light systems which support 100 W output power.


Proceedings of SPIE | 2015

Key components technology update of 100W HVM EUV source

Taku Yamazaki; Hakaru Mizoguchi; Hiroaki Nakarai; Tamotsu Abe; Yasufumi Kawasuji; Takeshi Okamoto; H. Tanaka; Yukio Watanabe; Tsukasa Hori; Takeshi Kodama; Yutaka Shiraishi; Shinji Okazaki; Takashi Saitou

This paper introduces key components technology update of 100 W HVM LPP-EUV (laser produced plasma extreme ultraviolet) source which enable sub-10 nm critical layer patterning. This light source system is composed of several key components and each has its innovating, key and original technology. They are perfectly controlled and work harmoniously to produce stable plasma and provide high power EUV light in long term to the photolithography equipment. This paper describes the latest results obtained from our proto systems and test stands which support one hundred watt HVM LPP-EUV light source. Key components performance with experimental data and measurements are reported, such as high power short pulse CO2 drive laser, unique pre-pulse laser technology, very small droplet generation, magnetic debris mitigation, laser-droplet shooting control and etc.


Proceedings of SPIE | 2017

Key components technology update of the 250W high-power LPP-EUV light source

Yasufumi Kawasuji; Krzysztof Nowak; Tsukasa Hori; Takeshi Okamoto; H. Tanaka; Yukio Watanabe; Tamotsu Abe; Takeshi Kodama; Yutaka Shiraishi; Hiroaki Nakarai; Taku Yamazaki; Shinji Okazaki; Takashi Saitou; Hakaru Mizoguchi

13.5nm wavelength, CO2-Sn-LPP EUV light source which is the most promising solution for the source capable of enabling high-volume-manufacturing of semiconductor devices with critical layers patterned with sub-10nm resolution. Our source incorporates unique and original technologies such as; high power short pulse CO2 laser, short wavelength solid-state pre-pulse laser, highly stabilized droplet generator, a laser-droplet shooting control system and debris mitigation technology utilizing a strong magnetic field. In this paper we present a technology update on the key components of our 250W CO2-Sn-LPP EUV light source.


International Conference on Extreme Ultraviolet Lithography 2017 | 2017

Key components development progress updates of the 250W high power LPP-EUV light source

Takayuki Yabu; Tatsuya Yanagida; Yasufumi Kawasuji; Tsukasa Hori; Takeshi Okamoto; Hiroshi Tanaka; Yukio Watanabe; Tamotsu Abe; Takeshi Kodama; Yutaka Shiraishi; Hiroaki Nakarai; Taku Yamazaki; Noritoshi Itou; Takashi Saito; Hakaru Mizoguchi; Takuya Ishii; Kenichi Miyao

Gigaphoton Inc. is developing a CO2-Sn-LPP EUV light source based on unique and original technologies including a high power CO2laser with 15 nanosecond pulse duration, a solid-state pre-pulse laser with 10 picosecond pulse duration, a highly stabilized droplet generator, a precise laser-droplet shooting control system and a debris mitigation system using a magnetic field. In this paper, an update of the development progress of our 250W CO2-Sn-LPP EUV light source and of the key components is presented.


china semiconductor technology international conference | 2018

High power LPP-EUV source with long collector mirror lifetime for high volume semiconductor manufacturing

Hakaru Mizoguchi; Hiroaki Nakarai; Tamotsu Abe; Krzysztof Nowak; Yasufumi Kawasuji; H. Tanaka; Yukio Watanabe; Tsukasa Hori; Takeshi Kodama; Yutaka Shiraishi; Tatsuya Yanagida; Georg Soumagne; Tsuyoshi Yamada; Taku Yamazaki; Takashi Saitou

We have been developing CO 2 -Sn-LPP EUV light source which is the most promising solution as the 13.5nm high power light source for HVM EUVL. Unique and original technologies such as; combination of pulsed CO2 laser and Sn droplets, dual wavelength laser pulses shooting and mitigation with magnetic field have been developed in Gigaphoton Inc. We have developed first practical source for HVM; “GL200E” 17) in 2014. We have proved high average power CO2 laser more than 20kW at output power cooperate with Mitsubishi electric cooperation16). Pilot#1 is up running and its demonstrates HVM capability; EUV power recorded at111W average (117W in burst stabilized, 95% duty) with 5% conversion efficiency for 22hours operation in October 201621). Recently we have demonstrated, EUV power recorded at113W in burst stabilized (85W in average, 75% duty), with 5% conversion efficiency during 143hours operation. Also the Pilot#1 system recorded 64% availability and idle time was 25%. Availability is potentially achievable at 89% (2weeks average), also superior magnetic mitigation has demonstrated promising mirror degradation rate (= −0.5%/Gp) above 100W level operation with dummy mirror test22). Very low degradation (= − 0.4%/Gp) of actual collector mirror reflectance has been demonstrated above 100W level operation (in burst) with magnetic mitigation EUV source.

Collaboration


Dive into the Yutaka Shiraishi's collaboration.

Top Co-Authors

Avatar

Takeshi Kodama

Tokyo Metropolitan University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge