Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gwan-Hyeob Koh is active.

Publication


Featured researches published by Gwan-Hyeob Koh.


international electron devices meeting | 2004

Highly manufacturable high density phase change memory of 64Mb and beyond

Seung-Eon Ahn; Y.J. Song; C.W. Jeong; J.M. Shin; Y. Fai; Y.N. Hwang; S.H. Lee; K.C. Ryoo; S.Y. Lee; J.H. Park; Hideki Horii; Y.H. Ha; J.H. Yi; B.J. Kuh; Gwan-Hyeob Koh; G.T. Jeong; H.S. Jeong; Kinam Kim; Byung-Il Ryu

Highly manufacturable 64Mbit PRAM has been successfully fabricated using N-doped Ge/sub 2/Sb/sub 2/Te/sub 5/ (GST) and optimal GST etching process. Using those technologies, it was possible to achieve the low writing current of 0.6 mA and clear separation between SET and RESET resistance distributions. The 64Mb PRAM was designed to support commercial NOR flash memory compatible interfaces. Therefore, the fabricated chip was tested under the mobile application platform and its functionality and reliability has been evaluated by operation temperature dependency, disturbance, endurance, and retention. Finally, it was clearly demonstrated that high density PRAM can be fabricated in the product level with strong reliability to produce new nonvolatile memory markets.


symposium on vlsi technology | 2003

Full integration and reliability evaluation of phase-change RAM based on 0.24 /spl mu/m-CMOS technologies

Y.N. Hwang; J.S. Hong; S.H. Lee; Seung-Eon Ahn; G.T. Jeong; Gwan-Hyeob Koh; Jae-joon Oh; H.J. Kim; Won-Cheol Jeong; S.Y. Lee; J.H. Park; K.C. Ryoo; Hideki Horii; Y.H. Ha; J.H. Yi; Woo Yeong Cho; Y.T. Kim; K.H. Lee; Suk-ho Joo; S.O. Park; U-In Chung; H.S. Jeong; Kinam Kim

We have fully integrated a nonvolatile random access memory by successfully incorporating a reversibly phase-changeable chalcogenide memory element with MOS transistor. As well as basic characteristics of the memory operation, we have also observed reliable performances of the device on hot temperature operation, endurance against repetitive phase transition, writing imprint, reading disturbance and data retention.


international electron devices meeting | 2006

Full Integration of Highly Manufacturable 512Mb PRAM based on 90nm Technology

Jae-joon Oh; J.H. Park; Y.S. Lim; Hyuck Lim; Y.T. Oh; Ju-Hyung Kim; J.M. Shin; Y.J. Song; K.C. Ryoo; Dong-won Lim; Soonoh Park; Jin-hak Kim; Jung-hyeon Kim; J. Yu; F. Yeung; C.W. Jeong; J.H. Kong; Donghun Kang; Gwan-Hyeob Koh; G.T. Jeong; H.S. Jeong; Kinam Kim

Fully functional 512Mb PRAM with 0.047mum2 (5.8F2) cell size was successfully fabricated using 90nm diode technology in which the authors developed novel process schemes such as vertical diode as cell switch, self-aligned bottom electrode contact scheme, and line-type Ge2Sb2Te5. The 512Mb PRAM showed excellent electrical properties of sufficiently large on-current and stable phase transition behavior. The reliability of the 512Mb chip was also evaluated as a write-endurance over 1E5 cycles and a data retention time over 10 years at 85degC


symposium on vlsi technology | 2005

Highly reliable 50nm contact cell technology for 256Mb PRAM

Soon-Hong Ahn; Y.N. Hwang; Y.J. Song; S.H. Lee; S.Y. Lee; J.H. Park; Changbum Jeong; K.C. Ryoo; J.M. Shin; Y. Fai; Jae-joon Oh; Gwan-Hyeob Koh; G.T. Jeong; Suk-ho Joo; Sung-Soo Choi; Yong-Hoon Son; Jungyeop Shin; Y.T. Kim; H.S. Jeong; Kinam Kim

Novel small contact fabrication technologies were proposed to realize reliable high density 256Mb PRAM(phase change memory) product. Introducing the 2-step CMP (chemical mechanical polishing) process and the ring-shaped contact structure, the contact area distribution was greatly improved even at the smallest contact diameter of 50nm node. The validity of this approach was directly confirmed by the evaluation of the functionality for the fabricated 256Mbit PRAM based on 0.10/spl mu/m CMOS technology.


international conference on microelectronics | 2004

Future memory technology including emerging new memories

Kinam Kim; Gwan-Hyeob Koh

There have been concerns about how far we can extend the so far so successful conventional semiconductor memories Such as DRAM, SRAM and Flash memory and what will be the future directions of memory development. In this article, we will review the key technical limits of conventional memory scaling and the directions to overcome the problem. In addition, we will review the technical challenges and opportunities of emerging. new memories such as ferroelectric RAM (FRAM), magnetic RAM (MRAM) and phase change RAM (PRAM) which has been recently focused as candidates for ideal memory which can solve the problems of conventional memories.


international electron devices meeting | 2003

Writing current reduction for high-density phase-change RAM

Y.N. Hwang; S.H. Lee; Seung-Eon Ahn; S.Y. Lee; K.C. Ryoo; H.S. Hong; H.C. Koo; F. Yeung; Jae-joon Oh; H.J. Kim; Won-Cheol Jeong; J.H. Park; Hideki Horii; Y.H. Ha; J.H. Yi; Gwan-Hyeob Koh; G.T. Jeong; H.S. Jeong; Kinam Kim

By developing a chalcogenide memory element that can be operated at low writing current, we have demonstrated the possibility of high-density phase-change random access memory. We have investigated the phase transition behaviors as a function of various process factors including contact size, cell size and thickness, doping concentration in chalcogenide material and cell structure. As a result, we have observed that the writing current is reduced down to 0.7 mA.


international solid-state circuits conference | 2004

A 0.18 /spl mu/m 3.0 V 64 Mb non-volatile phase-transition random-access memory (PRAM)

Woo Yeong Cho; Beak-Hyung Cho; Byung-Gil Choi; Hyung-Rok Oh; Sang-beom Kang; Ki-Sung Kim; Kyung-Hee Kim; Du-Eung Kim; Choong-keun Kwak; Hyun-Geun Byun; Young-Nam Hwang; Soon-Hong Ahn; Gwan-Hyeob Koh; G.T. Jeong; Hong-Sik Jeong; Kinam Kim

A non-volatile 64 Mb phase-transition RAM is developed by fully integrating a chalcogenide alloy GST (Ge/sub 2/Sb/sub 2/Te/sub 5/) into 0.18 /spl mu/m CMOS technology. This alloy is programmed by resistive heating. To optimize SET/RESET distribution, a 512 kb sub-core architecture, featuring meshed ground line, is proposed. Random read access and write access for SET/RESET are 60 ns, 120 ns and 50 ns, respectively, at 3.0 and 30/spl deg/C.


symposium on vlsi technology | 2006

Highly Reliable 256Mb PRAM with Advanced Ring Contact Technology and Novel Encapsulating Technology

Y.J. Song; Kyung-Chang Ryoo; Young-Nam Hwang; Chul Ho Jeong; Dong-won Lim; S.H. Park; Ju-Yong Kim; S.Y. Lee; Jeong-Taek Kong; S.T. Ahn; J.H. Park; Jae-joon Oh; Y. Oh; J.M. Shin; Y. Fai; Gwan-Hyeob Koh; G.T. Jeong; R. Kim; Hyun-Seok Lim; In-sung Park; H.S. Jeong; Kinam Kim

Advanced ring type technology and encapsulating scheme were developed to fabricate highly manufacturable and reliable 256Mb PRAM. Very uniform BEC area was prepared by the advanced ring type technology in which core dielectrics were optimized for cell contact CMP process. In addition, relatively high set resistance was stabilized from encapsulating Ge2Sb2Te5 (GST) stack with blocking layers, thus giving rise to a wide sensing window. These advanced ring type and encapsulating technologies can provide great potentials of developing high density 512Mb PRAM and beyond


symposium on vlsi technology | 2004

Full integration and cell characteristics for 64Mb nonvolatile PRAM

S.H. Lee; Y.N. Hwang; S.Y. Lee; K.C. Ryoo; Seung-Eon Ahn; H.C. Koo; C.W. Jeong; Y.T. Kim; Gwan-Hyeob Koh; G.T. Jeong; H.S. Jeong; Kinam Kim

We have integrated a 64Mb nonvolatile random access memory using phase transition phenomena. Based on 0.18/spl mu/m-CMOS technologies, the vertical contact typed memory cell is fabricated. The device density can be sharply increased with decreasing the writing current and the GST size. But for reduction of writing current, issues including set and interface resistances should be stabilized. Additionally, our results also show the feasibility of 256Mb nonvolatile PRAM with writing time below 100ns.


Japanese Journal of Applied Physics | 2005

Ge2Sb2Te5 Confined Structures and Integration of 64 Mb Phase-Change Random Access Memory

F. Yeung; Su-Jin Ahn; Young-Nam Hwang; Chang-Wook Jeong; Yoon-Jong Song; Suyoun Lee; Se-Ho Lee; Kyung-Chang Ryoo; Jaehyun Park; Jae-Min Shin; Won-Cheol Jeong; Young-Tae Kim; Gwan-Hyeob Koh; G.T. Jeong; Hong-Sik Jeong; Kinam Kim

Phase-change random access memory is considered a potential challenger for conventional memories, such as dynamic random access memory and flash memory due to its numerous advantages. Nevertheless, high reset current is the ultimate problem in developing high-density phase-change random access memory (PRAM). We focus on the adoption of Ge2Sb2Te5 confined structures to achieve lower reset currents. By changing from a normal to a GST confined structure, the reset current drops to as low as 0.8 mA. Eventually, our integrated 64 Mb PRAM based on 0.18 µm CMOS technology offers a large sensing margin: Rreset ~200 kΩ and Rset ~2 kΩ, as well as reasonable reliability: an endurance of 1.0×109 cycles and a retention time of 2 years at 85°C.

Collaboration


Dive into the Gwan-Hyeob Koh's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge