Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kinam Kim is active.

Publication


Featured researches published by Kinam Kim.


Nature Materials | 2011

A fast, high-endurance and scalable non-volatile memory device made from asymmetric Ta2O5−x/TaO2−x bilayer structures

Myoung-Jae Lee; Chang Bum Lee; Dong-Soo Lee; Seung Ryul Lee; Man Chang; Ji Hyun Hur; Young-Bae Kim; Chang-Jung Kim; David H. Seo; Sunae Seo; U-In Chung; In-kyeong Yoo; Kinam Kim

Numerous candidates attempting to replace Si-based flash memory have failed for a variety of reasons over the years. Oxide-based resistance memory and the related memristor have succeeded in surpassing the specifications for a number of device requirements. However, a material or device structure that satisfies high-density, switching-speed, endurance, retention and most importantly power-consumption criteria has yet to be announced. In this work we demonstrate a TaO(x)-based asymmetric passive switching device with which we were able to localize resistance switching and satisfy all aforementioned requirements. In particular, the reduction of switching current drastically reduces power consumption and results in extreme cycling endurances of over 10(12). Along with the 10 ns switching times, this allows for possible applications to the working-memory space as well. Furthermore, by combining two such devices each with an intrinsic Schottky barrier we eliminate any need for a discrete transistor or diode in solving issues of stray leakage current paths in high-density crossbar arrays.


Nature Communications | 2012

High-mobility and low-power thin-film transistors based on multilayer MoS2 crystals

Sunkook Kim; Aniruddha Konar; Wan-Sik Hwang; Jong Hak Lee; Jiyoul Lee; Jaehyun Yang; Changhoon Jung; Hyoungsub Kim; Ji-Beom Yoo; Jae-Young Choi; Yong Wan Jin; Sang Yoon Lee; Debdeep Jena; Woong Choi; Kinam Kim

Unlike graphene, the existence of bandgaps (1-2 eV) in the layered semiconductor molybdenum disulphide, combined with mobility enhancement by dielectric engineering, offers an attractive possibility of using single-layer molybdenum disulphide field-effect transistors in low-power switching devices. However, the complicated process of fabricating single-layer molybdenum disulphide with an additional high-k dielectric layer may significantly limit its compatibility with commercial fabrication. Here we show the first comprehensive investigation of process-friendly multilayer molybdenum disulphide field-effect transistors to demonstrate a compelling case for their applications in thin-film transistors. Our multilayer molybdenum disulphide field-effect transistors exhibited high mobilities (>100 cm(2) V(-1) s(-1)), near-ideal subthreshold swings (~70 mV per decade) and robust current saturation over a large voltage window. With simulations based on Shockleys long-channel transistor model and calculations of scattering mechanisms, these results provide potentially important implications in the fabrication of high-resolution large-area displays and further scientific investigation of various physical properties expected in other layered semiconductors.


Science | 2012

Graphene Barristor, a Triode Device with a Gate-Controlled Schottky Barrier

Heejun Yang; Jinseong Heo; Seongjun Park; Hyun Jae Song; David H. Seo; Kyung-Eun Byun; Philip Kim; In-kyeong Yoo; Hyun-jong Chung; Kinam Kim

Updating the Triode with Graphene In early electronics, the triode—a vacuum device that combined a diode and an electrical grid—was used to control and amplify signals, but was replaced in most applications by solid-state silicon electronics. One characteristic of silicon-metal interfaces is that the Schottky barrier created—which acts as a diode—does not change with the work function of the metal—the Fermi level is pinned by the presence of surface states. Yang et al. (p. 1140, published online 17 May) now show that for a graphene-silicon interface, Fermi-level pinning can be overcome and a triode-type device with a variable barrier, a “barristor,” can be made and used to create devices such as inverters. The absence of defects and surface oxides at a graphene/silicon interface enables voltage control of graphene devices. Despite several years of research into graphene electronics, sufficient on/off current ratio Ion/Ioff in graphene transistors with conventional device structures has been impossible to obtain. We report on a three-terminal active device, a graphene variable-barrier “barristor” (GB), in which the key is an atomically sharp interface between graphene and hydrogenated silicon. Large modulation on the device current (on/off ratio of 105) is achieved by adjusting the gate voltage to control the graphene-silicon Schottky barrier. The absence of Fermi-level pinning at the interface allows the barrier’s height to be tuned to 0.2 electron volt by adjusting graphene’s work function, which results in large shifts of diode threshold voltages. Fabricating GBs on respective 150-mm wafers and combining complementary p- and n-type GBs, we demonstrate inverter and half-adder logic circuits.


Nature | 2011

A role for graphene in silicon-based semiconductor devices

Kinam Kim; Jae-Young Choi; Taek Kim; Seong-Ho Cho; Hyun-jong Chung

As silicon-based electronics approach the limit of improvements to performance and capacity through dimensional scaling, attention in the semiconductor field has turned to graphene, a single layer of carbon atoms arranged in a honeycomb lattice. Its high mobility of charge carriers (electrons and holes) could lead to its use in the next generation of high-performance devices. Graphene is unlikely to replace silicon completely, however, because of the poor on/off current ratio resulting from its zero bandgap. But it could be used to improve silicon-based devices, in particular in high-speed electronics and optical modulators.


international electron devices meeting | 2004

Highly manufacturable high density phase change memory of 64Mb and beyond

Seung-Eon Ahn; Y.J. Song; C.W. Jeong; J.M. Shin; Y. Fai; Y.N. Hwang; S.H. Lee; K.C. Ryoo; S.Y. Lee; J.H. Park; Hideki Horii; Y.H. Ha; J.H. Yi; B.J. Kuh; Gwan-Hyeob Koh; G.T. Jeong; H.S. Jeong; Kinam Kim; Byung-Il Ryu

Highly manufacturable 64Mbit PRAM has been successfully fabricated using N-doped Ge/sub 2/Sb/sub 2/Te/sub 5/ (GST) and optimal GST etching process. Using those technologies, it was possible to achieve the low writing current of 0.6 mA and clear separation between SET and RESET resistance distributions. The 64Mb PRAM was designed to support commercial NOR flash memory compatible interfaces. Therefore, the fabricated chip was tested under the mobile application platform and its functionality and reliability has been evaluated by operation temperature dependency, disturbance, endurance, and retention. Finally, it was clearly demonstrated that high density PRAM can be fabricated in the product level with strong reliability to produce new nonvolatile memory markets.


symposium on vlsi technology | 2003

Full integration and reliability evaluation of phase-change RAM based on 0.24 /spl mu/m-CMOS technologies

Y.N. Hwang; J.S. Hong; S.H. Lee; Seung-Eon Ahn; G.T. Jeong; Gwan-Hyeob Koh; Jae-joon Oh; H.J. Kim; Won-Cheol Jeong; S.Y. Lee; J.H. Park; K.C. Ryoo; Hideki Horii; Y.H. Ha; J.H. Yi; Woo Yeong Cho; Y.T. Kim; K.H. Lee; Suk-ho Joo; S.O. Park; U-In Chung; H.S. Jeong; Kinam Kim

We have fully integrated a nonvolatile random access memory by successfully incorporating a reversibly phase-changeable chalcogenide memory element with MOS transistor. As well as basic characteristics of the memory operation, we have also observed reliable performances of the device on hot temperature operation, endurance against repetitive phase transition, writing imprint, reading disturbance and data retention.


Nano Letters | 2011

Porous PVDF As Effective Sonic Wave Driven Nanogenerators

SeungNam Cha; Seong Min Kim; Hyun-Jin Kim; JiYeon Ku; Jung Inn Sohn; Young Jun Park; Byong Gwon Song; Myoung Hoon Jung; Eun Kyung Lee; Byoung Lyong Choi; Jong Jin Park; Zhong Lin Wang; Jong Min Kim; Kinam Kim

Piezomaterials are known to display enhanced energy conversion efficiency at nanoscale due to geometrical effect and improved mechanical properties. Although piezoelectric nanowires have been the most widely and dominantly researched structure for this application, there only exist a limited number of piezomaterials that can be easily manufactured into nanowires, thus, developing effective and reliable means of preparing nanostructures from a wide variety of piezomaterials is essential for the advancement of self-powered nanotechnology. In this study, we present nanoporous arrays of polyvinylidene fluoride (PVDF), fabricated by a lithography-free, template-assisted preparation method, as an effective alternative to nanowires for robust piezoelectric nanogenerators. We further demonstrate that our porous PVDF nanogenerators produce the rectified power density of 0.17 mW/cm3 with the piezoelectric potential and the piezoelectric current enhanced to be 5.2 times and 6 times those from bulk PVDF film nanogenerators under the same sonic-input.


Nature Materials | 2012

Gated three-terminal device architecture to eliminate persistent photoconductivity in oxide semiconductor photosensor arrays

Sanghun Jeon; Seung-Eon Ahn; I-hun Song; Chang Jung Kim; U-In Chung; Eunha Lee; I. K. Yoo; Arokia Nathan; Sungsik Lee; Khashayar Ghaffarzadeh; J. Robertson; Kinam Kim

The composition of amorphous oxide semiconductors, which are well known for their optical transparency, can be tailored to enhance their absorption and induce photoconductivity for irradiation with green, and shorter wavelength light. In principle, amorphous oxide semiconductor-based thin-film photoconductors could hence be applied as photosensors. However, their photoconductivity persists for hours after illumination has been removed, which severely degrades the response time and the frame rate of oxide-based sensor arrays. We have solved the problem of persistent photoconductivity (PPC) by developing a gated amorphous oxide semiconductor photo thin-film transistor (photo-TFT) that can provide direct control over the position of the Fermi level in the active layer. Applying a short-duration (10 ns) voltage pulse to these devices induces electron accumulation and accelerates their recombination with ionized oxygen vacancy sites, which are thought to cause PPC. We have integrated these photo-TFTs in a transparent active-matrix photosensor array that can be operated at high frame rates and that has potential applications in contact-free interactive displays.


international electron devices meeting | 2006

Full Integration of Highly Manufacturable 512Mb PRAM based on 90nm Technology

Jae-joon Oh; J.H. Park; Y.S. Lim; Hyuck Lim; Y.T. Oh; Ju-Hyung Kim; J.M. Shin; Y.J. Song; K.C. Ryoo; Dong-won Lim; Soonoh Park; Jin-hak Kim; Jung-hyeon Kim; J. Yu; F. Yeung; C.W. Jeong; J.H. Kong; Donghun Kang; Gwan-Hyeob Koh; G.T. Jeong; H.S. Jeong; Kinam Kim

Fully functional 512Mb PRAM with 0.047mum2 (5.8F2) cell size was successfully fabricated using 90nm diode technology in which the authors developed novel process schemes such as vertical diode as cell switch, self-aligned bottom electrode contact scheme, and line-type Ge2Sb2Te5. The 512Mb PRAM showed excellent electrical properties of sufficiently large on-current and stable phase transition behavior. The reliability of the 512Mb chip was also evaluated as a write-endurance over 1E5 cycles and a data retention time over 10 years at 85degC


IEEE Journal of Solid-state Circuits | 2008

A Zeroing Cell-to-Cell Interference Page Architecture With Temporary LSB Storing and Parallel MSB Program Scheme for MLC NAND Flash Memories

Kitae Park; Myounggon Kang; Doo-gon Kim; Soonwook Hwang; Byung Yong Choi; Yeong-Taek Lee; Chang-Hyun Kim; Kinam Kim

A new MLC NAND page architecture is presented as a breakthrough solution for sub-40-nm MLC NAND flash memories and beyond. To reduce cell-to-cell interference which is well known as the most critical scaling barrier for NAND flash memories, a novel page architecture including temporary LSB storing program and parallel MSB program schemes is proposed. A BL voltage modulated ISPP scheme was used as parallel MSB programming in order to reduce cell-to-cell interference caused by the order in which the cells are programmed. By adopting the proposed page architecture, the number of neighbor cells that are programmed after programming a selected cell in BL direction as well as their amount of T/th shift during programming can be suppressed largely without increasing memory array size. Compared to conventional architecture it leads to a reduction of BL-BL cell-to-cell interference by almost 100%, and of WL-WL and diagonal cell-to-cell interferences by 50% at the 60 nm technology node. The proposed architecture enables also to improve average MLC program speed performance by 11% compared with conventional architecture, thanks to its fast LSB program performance.

Collaboration


Dive into the Kinam Kim's collaboration.

Researchain Logo
Decentralizing Knowledge