Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Haoren Zhuang is active.

Publication


Featured researches published by Haoren Zhuang.


Proceedings of SPIE | 2008

32 NM LOGIC PATTERNING OPTIONS WITH IMMERSION LITHOGRAPHY

Kafai Lai; Sean D. Burns; Scott Halle; L. Zhuang; Matthew E. Colburn; S. Allen; C. P. Babcock; Z. Baum; Martin Burkhardt; Vito Dai; Derren Dunn; E. Geiss; Henning Haffner; Geng Han; Peggy Lawson; Scott M. Mansfield; Jason Meiring; Bradley Morgenfeld; Cyrus E. Tabery; Yi Zou; Chandrasekhar Sarma; Len Y. Tsou; W. Yan; Haoren Zhuang; Dario Gil; David R. Medeiros

The semiconductor industry faces a lithographic scaling limit as the industry completes the transition to 1.35 NA immersion lithography. Both high-index immersion lithography and EUV lithography are facing technical challenges and commercial timing issues. Consequently, the industry has focused on enabling double patterning technology (DPT) as a means to circumvent the limitations of Rayleigh scaling. Here, the IBM development alliance demonstrate a series of double patterning solutions that enable scaling of logic constructs by decoupling the pattern spatially through mask design or temporally through innovative processes. These techniques have been successfully employed for early 32nm node development using 45nm generation tooling. Four different double patterning techniques were implemented. The first process illustrates local RET optimization through the use of a split reticle design. In this approach, a layout is decomposed into a series of regions with similar imaging properties and the illumination conditions for each are independently optimized. These regions are then printed separately into the same resist film in a multiple exposure process. The result is a singly developed pattern that could not be printed with a single illumination-mask combination. The second approach addresses 2D imaging with particular focus on both line-end dimension and linewidth control [1]. A double exposure-double etch (DE2) approach is used in conjunction with a pitch-filling sacrificial feature strategy. The third double exposure process, optimized for via patterns also utilizes DE2. In this method, a design is split between two separate masks such that the minimum pitch between any two vias is larger than the minimum metal pitch. This allows for final structures with vias at pitches beyond the capability of a single exposure. In the fourth method,, dark field double dipole lithography (DDL) has been successfully applied to BEOL metal structures and has been shown to be overlay tolerant [6]. Collectively, the double patterning solutions developed for early learning activities at 32nm can be extended to 22nm applications.


Proceedings of SPIE | 2008

Double exposure double etch for dense SRAM: a designer's dream

Chandrasekhar Sarma; Allen H. Gabor; Scott Halle; Henning Haffner; Klaus Herold; Len Y. Tsou; Helen Wang; Haoren Zhuang

As SRAM arrays become lithographically more aggressive than random logic, they are more and more determining the lithography processes used. High yielding, low leakage, dense SRAM cells demand fairly aggressive lithographic process conditions. This leads to a borderline process window for logic devices. The tradeoff obtained between process window optimization for random logic gates and dense SRAM is not always straightforward, and sometimes necessitates design rule and layout modifications. By delinking patterning of the logic devices from SRAM, one can optimize the patterning processes for these devices independently. This can be achieved by a special double patterning technique that employs a combination of double exposure and double etch (DE2). In this paper we show how a DE2 patterning process can be employed to pattern dense SRAM cells in the 45nm node on fully integrated wafers, with more than adequate overlap of gate line-end onto active area. We have demonstrated that this process has adequate process window for sustainable manufacturing. For comparison purpose we also demonstrate a single exposure single etch solution to treat such dense SRAM cells. In 45nm node, the dense SRAM cell can also be printed with adequate tolerances and process window with single expose (SE) with optimized OPC. This is confirmed by electrical results on wafer. We conclude that DE2 offers an attractive alternative solution to pattern dense SRAM in 45nm and show such a scheme can be extended to 32nm and beyond. Employing DE2 lets designers migrate to very small tip-to-tip distance in SRAM. The selection of DE2 or SE depends on layout, device performance requirements, integration schemes and cost of ownership.


Proceedings of SPIE | 2011

Single exposure contacts are dead. Long live single exposure contacts

Henning Haffner; Martin Ostermayr; Hideki Kanai; Chan Sam Chang; Bradley Morgenfeld; Meng Luo; Haoren Zhuang

The paper describes a process/design co-optimization effort based on an SRAM design to enable a single exposure contact process for the 28nm technology half node. As a start, a change to the wiring concept of the standard SRAM design was implemented. The resulting individual contact layer elements may seem even more resolution critical to the casual observer. But in reality, the flexibility for source-mask optimization had been significantly improved. In a second step, wafer targets and mask dimension options (using various kinds of OPC methods and SRAF strategies) were run through several optimization iterations. This included interlevel considerations due to stringent overlap requirements. Several promising SRAM design as well as mask options were identified and experimentally verified to finally converge to an optimum mask and wafer target layout. Said optimum solution still supports an automated OPC approach using standard EDA tools and off the shelf OPC strategies. In a last step, a 1Mbit electrically testable SRAM was designed and manufactured together with alternative SRAM designs and process options. After explaining the changes to the wiring of the SRAM design, the paper discusses in great detail various mask optimization solutions and their consequences on wafer target and printability. Simulation and experimental results are compared and the concluding optimized solution is explained. Furthermore, some key lithography and etch process elements that became the single exposure process enabler are explained in more detail. Finally, the paper will take a look at electrical results of the 1Mbit electrically testable SRAM as the ultimate proof of concept.


The Japan Society of Applied Physics | 2010

Cost Efficient Novel High Performance Analog Devices Integrated with Advanced HKMG Scheme for 28nm CMOS Technology and Beyond

Jin-Ping Han; Takashi Shimizu; Li-Hong Pan; M. Voelker; Christophe Bernicot; F. Arnaud; Anda C. Mocuta; Knut Stahrenberg; Atsushi Azuma; G. Yang; Manfred Eller; Daniel J. Jaeger; Haoren Zhuang; Katsura Miyashita; Kenneth J. Stein; Deleep R. Nair; J. H. Park; Masafumi Hamaguchi; S. Kohler; Daniel Chanemougame; Weipeng Li; K. Kim; Nam Sung Kim; Christian Wiedholz; S. Miyake; Gen Tsutsui; H. van Meer; J. Liang; Martin Ostermayr; Jenny Lian

Cost Efficient Novel High Performance Analog Devices Integrated with Advanced HKMG Scheme for 28nm CMOS Technology and Beyond J.-P. Han, T. Shimizu, L.-H. Pan, M. Voelker, C. Bernicot, F. Arnaud, A. C. Mocuta, K. Stahrenberg, A. Azuma, G. Yang, M. Eller, D. Jaeger, H. Zhuang, K. Miyashita, K. Stein, D. Nair, J.-H. Park, M. Hamaguchi, S. Kohler, D. Chanemougame, W. Li, K Kim, N. Kim, C. Wiedholz, S. Miyake, G. Tsutsui, H. van Meer, J. Liang, M. Ostermayr, J. Lian, M. Celik, R. Donaton, K. Barla, M.H. Na, Y. Goto, M. Sherony, F. Johnson, R. Wachnik, J. Sudijono,E. Kaste, R. Sampson, J.-H. Ku, A. Steegen, W. Neumueller Infineon Technologies, Renesas, IBM Microelectronics, STMicroelectronics, Toshiba America, GLOBALFOUNDRIES, Samsung Electronics, alliances at IBM SRDC, 2070 Rt 52, Hopewell Junction, NY12533; [email protected],


Archive | 2010

Metrology systems and methods for lithography processes

Chandrasekhar Sarma; Jingyu Lian; Matthias Lipinski; Haoren Zhuang


Archive | 2006

Process control systems and methods

Haoren Zhuang; Chandrasekhar Sarma; Matthias Lipinski; Jingyu Lian; Alois Gutmann


Archive | 2010

Method for Manufacturing a Semiconductor Device Having Doped and Undoped Polysilicon Layers

Haoren Zhuang; Matthias Lipinski; Jingyu Lian; Chandrasekhar Sarma


Archive | 2010

Feature Dimension Control in a Manufacturing Process

Haoren Zhuang; Alois Gutmann; Matthias Lipinski; Chandrasekhar Sarma; Jingyu Lian


Japanese Journal of Applied Physics | 2011

Novel High-Performance Analog Devices for Advanced Low-Power High-

Jin-Ping Han; Takashi Shimizu; Li-Hong Pan; Moritz Voelker; Christophe Bernicot; F. Arnaud; Anda C. Mocuta; Knut Stahrenberg; Atsushi Azuma; Manfred Eller; Guoyong Yang; Daniel J. Jaeger; Haoren Zhuang; Katsura Miyashita; Kenneth J. Stein; Deleep R. Nair; Jae Hoo Park; Sabrina Kohler; Masafumi Hamaguchi; Weipeng Li; Kisang Kim; Daniel Chanemougame; Nam Sung Kim; Sadaharu Uchimura; Gen Tsutsui; Christian Wiedholz; Shinich Miyake; Hans van Meer; Jewel Liang; Martin Ostermayr


Archive | 2010

k

Haoren Zhuang; Matthias Lipinski; Jingyu Lian; Chandrasekhar Sarma

Collaboration


Dive into the Haoren Zhuang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge