Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kuo-Shu Kao is active.

Publication


Featured researches published by Kuo-Shu Kao.


electronic components and technology conference | 2011

Characterization and reliability assessment of solder microbumps and assembly for 3D IC integration

Ching-Kuan Lee; Tao-Chih Chang; Yu-Jiau Huang; Huan-Chun Fu; Jui-Hsiung Huang; Zhi-Cheng Hsiao; John H. Lau; Cheng-Ta Ko; Ren-Shin Cheng; Pei-Chen Chang; Kuo-Shu Kao; Yu-Lan Lu; Robert Lo; M. J. Kao

In this investigation, Cu/Sn lead-free solder microbumps with 10μm pads on 20μm pitch are designed and fabricated. The chip size is 5mm × 5mm with thousands of microbumps. A daisy-chain feature is adopted for the characterization and reliability Assessment. After pattern trace formation, the microbump is fabricated on the trace by an electroplating technique. A suitable barrier/seed layer thickness is designed and applied to minimize the undercut due to wet etching but still achieve good plating uniformity. With the current process, the undercut is less than 1μm and the bump height variation is less than 10%. In addition, the shear test is adopted to characterize the bump strength, which exceeds the specification. Also, the Cu-Sn lead-free solder micro bumped chip is bonded on a Si wafer (chip-to-wafer or C2W bonding). Furthermore, the micro-gap between the bonded chips is filled with a special underfill. The shear strength of the bonded chips w/o underfill is measured and exceeds the specification. The bonding and filling integrity is further evaluated by open/short measurement, SAT analysis, and cross-section with SEM analysis. The stacked ICs are evaluated by reliability tests, including thermal cycling test (−55⇆125°C, dwell and ramp times = 15 min). Finally, ultra find-pitch (5μm pads on 10μm pitch) lead-free solder microbumping is explored.


electronic components and technology conference | 2011

Development of fluxless chip-on-wafer bonding process for 3DIC chip stacking with 30μm pitch lead-free solder micro bumps and reliability characterization

Chau-Jie Zhan; Jing-Ye Juang; Yu-Min Lin; Yu-Wei Huang; Kuo-Shu Kao; Tsung-Fu Yang; Su-Tsai Lu; John H. Lau; Tai-Hong Chen; Robert Lo; M. J. Kao

3D IC integration can be accomplished by using the approaches such as chip-on-chip, chip-on-wafer and wafer-on-wafer integration. The scheme of chip-on-chip shows the advantages of high flexibility and yield during assembly process. However, low fabrication throughput has been a major issue. When compared to chip-on-chip integrations, wafer-on-wafer may provide the higher manufacturing throughput but its overall yield will be limited by accumulative yield. Also, good chips are forced to bond on bad chip. Therefore, the development of chip-on-wafer integration may be a better scheme for 3D chip stacking. In this study, a high-yield and fluxless chip-on-wafer bonding process with 30μm pitch lead-free solder micro bump interconnection were demonstrated and the reliability of micro joint was also evaluated. Test chip adopted in this study had more than 3000 micro bumps with a diameter of 18μm and a pitch of 30μm. Sn2.5Ag solder material was electroplated on Cu/Ni under bump metallurgy (UBM) of both the test chip and 200mm wafer. To achieve the purpose of fluxless chip-on-wafer bonding, the plasma pre-treatment was applied to both the test chips and bonded wafer. The thermo-compression bonding method with the gap control capability was also carried out. In this work, the fluxless thermo-compression bonding having more than 90% CoW yield had been accomplished. The factor of Sn thickness was found to evidently influence the CoW yield. With the optimized plasma treatment parameters and bonding conditions, a well-aligned and robust joining of micro bump without using flux could be obtained. The results of reliability test revealed that the introduction of underfill could apparently enhance the reliability performance of micro joint under mechanical evaluation. Also, the solder micro bump joint showed excellent electromigration resistance when compared to standard flip chip bump under current stress of 5×10−4 A/cm2 at an ambient temperature of 150°C.


IEEE Transactions on Components, Packaging and Manufacturing Technology | 2012

Reliable Microjoints Formed by Solid–Liquid Interdiffusion (SLID) Bonding Within a Chip-Stacking Architecture

Jing-Yao Chang; Ren-Shin Cheng; Kuo-Shu Kao; Tao-Chih Chang; Tung-Han Chuang

In this research, thousands of 20-μm pitch microbumps with a diameter of 10 μm and a structure of a pure Sn cap on a Cu pillar were electroplated on 8-inch wafers, and those wafers were then respectively singularized as a top chip and bottom Si interposer for stacking. Two methods, namely conventional reflow and solid-liquid interdiffusion (SLID) bonding, were adopted to interconnect the microbumps. In the former case, the as-plated Sn caps were fluxed, and the chip was then placed on the Si interposer. Afterward, the Sn caps on the chip and on the Si interposer were melted and interconnected at a peak temperature of 250 °C. The flux residues were cleaned after reflow, and the microgap between the chip and the Si interposer was fully sealed by a capillary underfill. In the SLID bonding process, the oxides on the as-plated Sn caps were removed by a plasma etcher first, and then the chip was placed on the interposer with a bonder as well, subsequently, the Sn caps were heated to 260°C to react with the Cu pillar to form Cu6Sn5. In the final step, the intermetallic microjoints were protected by the same capillary underfill. After assembly, the Joint Electron Devices Engineering Council preconditioning test was used to screen the test vehicles for reliability assessment, and then a temperature cycling test was performed to predict the lifespan of the microjoints. The test results showed that the microjoints formed by SLID bonding provided a superior reliability performance to those assembled by reflow. The fracture of the microjoints was caused by the volume contraction induced by the growth of Cu6Sn5, but the failure mechanisms of those two microjoints were quite different.


IEEE Transactions on Components, Packaging and Manufacturing Technology | 2012

Wafer Bumping, Assembly, and Reliability of Fine-Pitch Lead-Free Micro Solder Joints for 3-D IC Integration

Ching-Kuan Lee; Tao-Chih Chang; John H. Lau; Yu-Jiau Huang; Huan-Chun Fu; Jui-Hsiung Huang; Zhi-Cheng Hsiao; Cheng-Ta Ko; Ren-Shin Cheng; Pei-Chen Chang; Kuo-Shu Kao; Yu-Lan Lu; Robert Lo; Ming-Jer Kao

In this investigation, Cu-Sn lead-free solder microbumps on 10-μm pads with a 20-μm pitch are designed and fabricated. The chip size is 5 × 5 mm with thousands of microbumps. A daisy-chain feature is adopted for the characterization and reliability assessment. After pattern trace formation, the microbump is fabricated on the trace by an electroplating technique. A suitable barrier/seed layer thickness is designed and applied to minimize the undercut due to wet etching but to still achieve good plating uniformity. With the current process, the undercut is less than 1 μm and the bump height variation is less than 10%. In addition, the shear test is adopted to characterize the bump strength, which exceeds the specification. Also, the Cu-Sn lead-free solder microbumped chip is bonded on an Si wafer using chip-to-wafer bonding technique. Furthermore, the microgap between the bonded chips is filled with a special underfill. The shear strength of the bonded chips without the underfill is measured and it exceeds the specification. The bonding and filling integrity is further evaluated by open/short measurement, scanning acoustic tomography analysis, and cross-section with scanning electron microscopy analysis. The stacked ICs are evaluated by reliability (thermal cycling) test (-55 to 125°C). Finally, ultrafine-pitch (5-μm pads on a 10-μm pitch) lead-free solder microbumping is explored.


IEEE Transactions on Components, Packaging and Manufacturing Technology | 2012

Development of Cu/Ni/SnAg Microbump Bonding Processes for Thin Chip-on-Chip Packages Via Wafer-Level Underfill Film

Chang-Chun Lee; Tsung-Fu Yang; Kuo-Shu Kao; Ren-Chin Cheng; Chau-Jie Zhan; Tai-Hong Chen

3-D integration provides a promising approach for the construction of complex microsystems through the bonding and interconnection of individually optimized device layers without sacrificing system performance. The use of traditional underfill processes is expected to face an arduous challenge as the filled gap of a large-scale chip is narrowed down to several micrometers. Consequently, the subsequent reliability of microbumps (μ-bumps) joints and the relative assembly compatibility of stacked chips of 3-D IC packages deteriorate. To resolve this critical issue, a novel technology for wafer-level underfill film (WLUF) is developed. This paper demonstrates the steps that the proposed technology would take. These steps include the alignment of the WLUF-coated chip to the substrate chip and the elimination of voids to make the proposed technology work. However, the coplanarity of stacked thin chips after assembling with the WLUF, is an urgent problem that needs to be understood in detail. Therefore, this paper presents a nonlinear finite element analysis (FEA) using a process-oriented simulation technique to estimate the warpage of stacked thin chips. For experimental validation, the effects of several key designed factors on the thermomechanical behavior of chip-on-chip package under various bonding forces are investigated. The analytic results indicate that a chip thickness of <; 50 μm at the outermost region of the packaging structure without μ-bumps significantly reduces approximately 2 μm of gap between chips. This phenomenon is attributed to the major structural support at the purlieus of the chip via WLUF, which is extremely weak when a uniform bonding pressure is loaded. In addition, the subsequent cooling procedure of the WLUF further aggravates the warpage magnitude of the stacked thin chips. The results of this paper could serve as a guideline for further improvement of the bonding reliability and for the design of the structural optimization of packaging assemblies via the WLUF.


electronic components and technology conference | 2012

Effects of UBM structure/material on the reliability performance of 3D chip stacking with 30μm-pitch solder micro bump interconnections

Shin-Yi Huang; Chau-Jie Zhan; Yu-Wei Huang; Yu-Min Lin; Chia-Wen Fan; Su-Ching Chung; Kuo-Shu Kao; Jing-Yao Chang; Mei-Lun Wu; Tsung-Fu Yang; John H. Lau; Tai-Hung Chen

With the increased demand of functionality in electronic device, three dimensional integration circuits technology together with downscaling of interconnection pitch present an important role for the development of next generation electronics. In the current types of interconnects, solder micro bumps have received much attention due to its low cost in material and process. For fine pitch solder micro bump interconnections, selection of under bump metallurgical material is a crucial issue because the UBM structure/material will show a significant influence on the reliability performances of the solder micro bump joints. However, which UBM structure/material for fine pitch solder micro bump joint presents the better reliability properties is not concluded yet until now. In this study, the effect of UBM structural/material on the reliability properties of lead-free solder micro interconnections with a pitch of 30μm was discussed. The chip-on-chip test vehicle with solder micro bump interconnections having a diameter of 18 μm was adopted to evaluate the effects of UBM structure/material. There were more than 3000 micro bumps with Sn2.5Ag solder material on both the silicon chip and carrier. In this study, three types of UBM were selected on the silicon carrier: they were single copper layer with a thickness of 8μm; the Cu/Ni layer with the thickness of 5μm/3μm and the Cu/Ni/Au layer with the thickness of 5μm/3μm/0.5μm. The UBM was electro-plated on the Al trace and then the Sn2.5Ag solder with a thickness of 5 μm was deposited. For the silicon carrier with the bump structure of Cu/Sn and Cu/Ni/Sn, the silicon test chip with solder micro bump of Cu/Sn was used for chip bonding. The test chip having the solder micro bump of Cu/Sn and Cu//Ni/Sn was used for bonding with the silicon carrier having the Cu/Ni/Au UBM. In chip stacking process, we adopted the fluxless thermocompression process for each type of micro joints. After chip bonding process, the fine gap between bonded chips was filled by capillary type of underfill. The influence of underfill on the reliability of solder micro bump interconnects with various combinations of UBM structures were estimated also. After the assembly process, temperature cycling test (TCT), high temperature storage (HTS) and electromigration test (EM) were performed on the chip-stacking module to assess the effect of UBM structure/material on the reliability of solder micro bump interconnections. The results of reliability test revealed that only Cu/Sn/Au/Ni/Cu micro joint could not pass the TCT and HTS of 1000 cycles. After reliability test, the Cu/Sn/Cu joints showed the evidently microstructural evolution while the Cu/Ni/Sn/Cu joints did not show apparent microstructure change among all the types of micro joints and still revealed the most contents of residual solder within the joint. On the other hand, the existence of Au layer upon the UBM caused the complicated interface reaction between solder and UBM, which presented a negative effect during long-term reliability performance. The reliability results also displayed that the introduction of underfill could apparently enhance the reliability of micro joint under mechanical evaluation. From the results of EM reliability test, all the types of the micro joints showed excellent electromigration resistance under current stress of 0.08A at an ambient temperature of 150°C irrespective of the types of UBM. This superior property was attributed to the microstructure change transformed from the solder joint to the IMC joint within the solder micro bump interconnections during electromigration test. All the results of reliability test illustrated that the selection of UBM structure/material well influenced the reliability performance of fine-pitch solder micro bump interconnections in 3D chip stacking.


electronic components and technology conference | 2012

Assembly process and reliability assessment of TSV/RDL/IPD interposer with multi-chip-stacking for 3D IC integration SiP

Chau-Jie Zhan; Pei-Jer Tzeng; John H. Lau; Ming-Ji Dai; Heng-Chieh Chien; Ching-Kuan Lee; Shang-Tsai Wu; Kuo-Shu Kao; Shin-Yi Huang; Chia-Wen Fan; Su-Ching Chung; Yu-Wei Huang; Yu-Min Lin; Jing-Yao Chang; Tsung-Fu Yang; Tai-Hung Chen; Robert Lo; M. J. Kao

In this study, a 3D IC integration system-in-package (SiP) with TSV/RDL/IPD interposer is designed and developed. Emphasis is placed on the Cu revealing, embedded stress sensors, non-destructive inspection, thermal modeling and measurement, and final assembly and reliability assessments.


international conference on electronic materials and packaging | 2012

IGBT power module packaging for EV applications

Chun-Kai Liu; Yu-Lin Chao; June-Chien Chang; Wei Li; Chih-Ming Tzeng; Rong-Chang Fang; Kuo-Shu Kao; Tao-Chih Chang; Chang-Sheng Chen; Wei-Chung Lo

Insulated gate bipolar transistor (IGBT modules are widely used in power electronics applications such as vehicle and household applications as well as industry to realize energy savings with higher efficiency, smaller size, low cost, higher reliability and more environmental safety. However, due to the large power generation of IGBT and diode chips and harsh application environment of vehicle applications, reliability is an important issue. In this paper, the 600V, 450A IGBT high power module packaging technologies for electrical vehicle are developed and verified. The integrated optimum design of thermal, stress and electrical designs is established. Power module assembly technologies with high reliability include chip and DBC (direct bond copper) bonding with low void rate, heavy Al wire bonding and module encapsulation are developed. Finally, the performance of power module is verified by module testing and EV platform testing. The results show that the optimum design and assembly process can reduce junction temperature, thermal stress and parasitic effects of IGBT power modules. The power modules have good performance that can successfully pass through the module and EV platform tests.


Soldering & Surface Mount Technology | 2012

Evaluation of Cu/SnAg microbump bonding processes for 3D integration using wafer‐level underfill film

Tsung-Fu Yang; Kuo-Shu Kao; Ren-Chin Cheng; Jing-Yao Chang; Chau-Jie Zhan

Purpose – 3D chip stacking is a key technology for 3D integration in which two or more chips are stacked with vertical interconnections. In the case of multi chip stacking with fine pitch microbump connections, capillary dispensing presents big limitations in terms of cost and processability. The purpose of this paper is to describe the way in which wafer‐level underfill (WLUF) process development was carried out with particular emphasis on microbump height coplanarity, bonding pressure distribution and the alignment of the microbumps. A three factorial design of experiment (DOE) was also conducted to enhance the understanding of the factors impacting the WLUF process such as bonding pressure, temperature and time on reliability test.Design/methodology/approach – B‐staged WLUF was laminated on an 8″ wafer with a 30 μm pitch bump structure of 8 μm Cu/5 μm Sn2.5Ag Pb‐free solder. After wafer dicing, the chip with the WLUF was assembled on a substrate chip with the same bump structure using a high accuracy b...


international symposium on power electronics for distributed generation systems | 2013

600V, 450A IGBT power module for 50kw electrical vehicle

Chun-Kai Liu; Yu-Lin Chao; June-Chien Chang; Wei Li; Chih-Ming Tzeng; Rong-Chang Fang; Kuo-Shu Kao; Tao-Chih Chang; Chang-Sheng Chen; Ming-Kan Liang; Wei-Chung Lo

Insulated gate bipolar transistor (IGBT) power modules are widely used in household, industry and vehicle applications due to the features of higher efficiency, smaller size, low cost and higher reliability. However, the large power dissipation of IGBT and diode chips and harsh application environment of vehicle, reliability is an important issue. In this paper, the 600V, 450A IGBT power module packaging technologies for 50kW electrical vehicle (EV) are developed and verified. The integrated electrical, thermal, and stress design is established. Module assembly technologies include chip on direct bond copper (DBC) substrate bonding, DBC substrate on base plate bonding, heavy Al wire bonding are developed. Finally, the performance of power module is verified by module testing, system platform testing and EV vehicle testing. The results show that the IGBT power modules have good performance and successfully pass through the system platform and EV vehicle tests.

Collaboration


Dive into the Kuo-Shu Kao's collaboration.

Top Co-Authors

Avatar

Tao-Chih Chang

Industrial Technology Research Institute

View shared research outputs
Top Co-Authors

Avatar

Chau-Jie Zhan

Industrial Technology Research Institute

View shared research outputs
Top Co-Authors

Avatar

Jing-Yao Chang

Industrial Technology Research Institute

View shared research outputs
Top Co-Authors

Avatar

Tsung-Fu Yang

Industrial Technology Research Institute

View shared research outputs
Top Co-Authors

Avatar

Chia-Wen Fan

Industrial Technology Research Institute

View shared research outputs
Top Co-Authors

Avatar

Ren-Shin Cheng

Industrial Technology Research Institute

View shared research outputs
Top Co-Authors

Avatar

Yu-Min Lin

Industrial Technology Research Institute

View shared research outputs
Top Co-Authors

Avatar

Chang-Chun Lee

Chung Yuan Christian University

View shared research outputs
Top Co-Authors

Avatar

John H. Lau

Industrial Technology Research Institute

View shared research outputs
Top Co-Authors

Avatar

Shin-Yi Huang

Industrial Technology Research Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge