Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Manuel Krebs is active.

Publication


Featured researches published by Manuel Krebs.


Nature Photonics | 2014

High photon flux table-top coherent extreme-ultraviolet source

Steffen Hädrich; Arno Klenke; Jan Rothhardt; Manuel Krebs; Armin Hoffmann; Oleg Pronin; Vladimir Pervak; Jens Limpert; Andreas Tünnermann

High photon flux with up to 1012 photons in the 25–40 eV range has been achieved in a new table-top coherent extreme ultraviolet (EUV) source based on phase-matched high-harmonic generation using a fibre laser. Intense and compact EUV sources are needed for certain types of spectroscopic and imaging applications.


Optics Letters | 2014

53 W average power few-cycle fiber laser system generating soft x rays up to the water window

Jan Rothhardt; Steffen Hädrich; Arno Klenke; Stefan Demmler; Armin Hoffmann; Thomas Gotschall; Tino Eidam; Manuel Krebs; Jens Limpert; Andreas Tünnermann

We report on a few-cycle laser system delivering sub-8-fs pulses with 353 μJ pulse energy and 25 GW of peak power at up to 150 kHz repetition rate. The corresponding average output power is as high as 53 W, which represents the highest average power obtained from any few-cycle laser architecture so far. The combination of both high average and high peak power provides unique opportunities for applications. We demonstrate high harmonic generation up to the water window and record-high photon flux in the soft x-ray spectral region. This tabletop source of high-photon flux soft x rays will, for example, enable coherent diffractive imaging with sub-10-nm resolution in the near future.


Optics Express | 2010

High average and peak power few-cycle laser pulses delivered by fiber pumped OPCPA system

Jan Rothhardt; Steffen Hädrich; Enrico Seise; Manuel Krebs; F. Tavella; Arik Willner; S. Düsterer; H. Schlarb; J. Feldhaus; Jens Limpert; J. Rossbach; Andreas Tünnermann

We report on a high power optical parametric amplifier delivering 8 fs pulses with 6 GW peak power. The system is pumped by a fiber amplifier and operated at 96 kHz repetition rate. The average output power is as high as 6.7 W, which is the highest average power few-cycle pulse laser reported so far. When stabilizing the seed oscillator, the system delivered carrier-envelop phase stable laser pulses. Furthermore, high harmonic generation up to the 33(th) order (21.8 nm) is demonstrated in a Krypton gas jet. In addition, the scalability of the presented laser system is discussed.


Optics Express | 2011

Generation of µW level plateau harmonics at high repetition rate

Steffen Hädrich; Manuel Krebs; Jan Rothhardt; Henning Carstens; Stefan Demmler; Jens Limpert; Andreas Tünnermann

The process of high harmonic generation allows for coherent transfer of infrared laser light to the extreme ultraviolet spectral range opening a variety of applications. The low conversion efficiency of this process calls for optimization or higher repetition rate intense ultrashort pulse lasers. Here we present state-of-the-art fiber laser systems for the generation of high harmonics up to 1 MHz repetition rate. We perform measurements of the average power with a calibrated spectrometer and achieved µW harmonics between 45 nm and 61 nm (H23-H17) at a repetition rate of 50 kHz. Additionally, we show the potential for few-cycle pulses at high average power and repetition rate that may enable water-window harmonics at unprecedented repetition rate.


Scientific Reports | 2015

Real-time and Sub-wavelength Ultrafast Coherent Diffraction Imaging in the Extreme Ultraviolet

Michael Zürch; Jan Rothhardt; Steffen Hädrich; Stefan Demmler; Manuel Krebs; Jens Limpert; Andreas Tünnermann; Alexander Guggenmos; Ulf Kleineberg; Ch. Spielmann

Coherent Diffraction Imaging is a technique to study matter with nanometer-scale spatial resolution based on coherent illumination of the sample with hard X-ray, soft X-ray or extreme ultraviolet light delivered from synchrotrons or more recently X-ray Free-Electron Lasers. This robust technique simultaneously allows quantitative amplitude and phase contrast imaging. Laser-driven high harmonic generation XUV-sources allow table-top realizations. However, the low conversion efficiency of lab-based sources imposes either a large scale laser system or long exposure times, preventing many applications. Here we present a lensless imaging experiment combining a high numerical aperture (NA = 0.8) setup with a high average power fibre laser driven high harmonic source. The high flux and narrow-band harmonic line at 33.2 nm enables either sub-wavelength spatial resolution close to the Abbe limit (Δr = 0.8λ) for long exposure time, or sub-70 nm imaging in less than one second. The unprecedented high spatial resolution, compactness of the setup together with the real-time capability paves the way for a plethora of applications in fundamental and life sciences.


Optics Express | 2010

High harmonic generation by novel fiber amplifier based sources.

Steffen Hädrich; Jan Rothhardt; Manuel Krebs; F. Tavella; Arik Willner; Jens Limpert; Andreas Tünnermann

Significant progress in high repetition rate ultrashort pulse sources based on fiber technology is presented. These systems enable operation at a high repetition rate of up to 500 kHz and high average power in the extreme ultraviolet wavelength range via high harmonic generation in a gas jet. High average power few-cycle pulses of a fiber amplifier pumped optical parametric chirped pulse amplifier are used to produce µW level average power for the strongest harmonic at 42.9 nm at a repetition rate of 96 kHz.


Physical Review Letters | 2014

Enhancing the macroscopic yield of narrow-band high-order harmonic generation by Fano resonances.

Jan Rothhardt; Steffen Hädrich; Stefan Demmler; Manuel Krebs; S. Fritzsche; Jens Limpert; Andreas Tünnermann

Resonances in the photoabsorption spectrum of the generating medium can modify the spectrum of high-order harmonics. In particular, window-type Fano resonances can reduce photoabsorption within a narrow spectral region and, consequently, lead to an enhanced emission of high-order harmonics in absorption-limited generation conditions. For high harmonic generation in argon it is shown that the 3s3p(6)np(1)P(1) window resonances (n = 4, 5, 6) give rise to enhanced photon yield. In particular, the 3s3p(6)4p(1)P(1) resonance at 26.6 eV allows a relative enhancement up to a factor of 30 in a 100 meV bandwidth compared to the characteristic photon emission of the neighboring harmonic order. This enhanced, spectrally isolated, and coherent photon emission line has a relative energy bandwidth of only ΔE/E = 3 × 10(-3). Therefore, it might be very useful for applications such as precision spectroscopy or coherent diffractive imaging. The presented mechanism can be employed for tailoring and controlling the high harmonic emission of manifold target materials.


Optics Letters | 2012

Improving carrier-envelope phase stability in optical parametric chirped-pulse amplifiers by control of timing jitter.

Steffen Hädrich; Jan Rothhardt; Manuel Krebs; Stefan Demmler; Jens Limpert; Andreas Tünnermann

It is shown that timing jitter in optical parametric chirped-pulse amplification induces spectral drifts that transfer to carrier-envelope phase (CEP) instabilities via dispersion. Reduction of this effect requires temporal synchronization, which is realized with feedback obtained from the angularly dispersed idler. Furthermore, a novel method to measure the CEP drifts by utilizing parasitic second harmonic generation within parametric amplifiers is presented. Stabilization of the timing allows the obtainment of a CEP stability of 86 mrad over 40 min at 150 kHz repetition rate.


Review of Scientific Instruments | 2013

Sensitivity calibration of an imaging extreme ultraviolet spectrometer-detector system for determining the efficiency of broadband extreme ultraviolet sources

Silvio Fuchs; Christian Rödel; Manuel Krebs; Steffen Hädrich; J. Bierbach; A. E. Paz; S. Kuschel; Martin Wünsche; Vinzenz Hilbert; U. Zastrau; E. Förster; Jens Limpert; G. G. Paulus

We report on the absolute sensitivity calibration of an extreme ultraviolet (XUV) spectrometer system that is frequently employed to study emission from short-pulse laser experiments. The XUV spectrometer, consisting of a toroidal mirror and a transmission grating, was characterized at a synchrotron source in respect of the ratio of the detected to the incident photon flux at photon energies ranging from 15.5 eV to 99 eV. The absolute calibration allows the determination of the XUV photon number emitted by laser-based XUV sources, e.g., high-harmonic generation from plasma surfaces or in gaseous media. We have demonstrated high-harmonic generation in gases and plasma surfaces providing 2.3 μW and μJ per harmonic using the respective generation mechanisms.


Optics Letters | 2013

Generation of high-photon flux-coherent soft x-ray radiation with few-cycle pulses.

Stefan Demmler; Jan Rothhardt; Steffen Hädrich; Manuel Krebs; Arvid Hage; Jens Limpert; Andreas Tünnermann

We present a tabletop source of coherent soft x-ray radiation with high-photon flux. Two-cycle pulses delivered by a fiber-laser-pumped optical parametric chirped-pulse amplifier operating at 180 kHz repetition rate are upconverted via high harmonic generation in neon to photon energies beyond 200 eV. A maximum photon flux of 1.3·10(8) photons/s is achieved within a 1% bandwidth at 125 eV photon energy. This corresponds to a conversion efficiency of ~10(-9), which can be reached due to a gas jet simultaneously providing a high target density and phase matching. Further scaling potential toward higher photon flux as well as higher photon energies are discussed.

Collaboration


Dive into the Manuel Krebs's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge