S. Citraro
University of Pisa
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by S. Citraro.
Journal of Instrumentation | 2014
A Andreani; A. Annovi; R Beccherle; M Beretta; Nicolo Vladi Biesuz; W Billereau; R Cipriani; S. Citraro; M Citterio; A Colombo; J M Combe; Francesco Crescioli; D Dimas; S Donati; Christos Gentsos; P. Giannetti; K. Kordas; A Lanza; V. Liberali; P Luciano; D Magalotti; P. Neroutsos; S. Nikolaidis; M. Piendibene; E Rossi; A Sakellariou; S. Shojaii; Calliope Louisa Sotiropoulou; Alberto Stabile; P Vulliez
The Fast TracKer (FTK) is an extremely powerful and very compact processing unit, essential for efficient Level 2 trigger selection in future high-energy physics experiments at the LHC. FTK employs Associative Memories (AM) to perform pattern recognition; input and output data are transmitted over serial links at 2 Gbit/s to reduce routing congestion at the board level. Prototypes of the AM chip and of the AM board have been manufactured and tested, in preparation of the imminent design of the final version.
IEEE Transactions on Nuclear Science | 2016
S. Citraro; A. Annovi; Nicolo Vladi Biesuz; P. Giannetti; P. Luciano; H. Nasimi; M. Piendibene; Calliope Louisa Sotiropoulou; G. Volpi
A high-performance “pattern matching” implementation based on the Associative Memory (AM) system is presented. It is designed to solve the real-time hit-to-track association problem for particles produced in high-energy physics experiments at hadron colliders. The processing time of pattern recognition in CPU-based algorithms increases rapidly with the detector occupancy due to the limited computing power and input-output capacity of hardware available on the market. The AM system presented here solves the problem by being able to process even the most complex hadron collider events produced at a rate of 100 kHz with an average latency smaller than 10 μs. The board built for this goal is able to execute ~12 petabyte comparisons per second, with peak power consumption below 250 W, uniformly distributed on the large area of the board.
Journal of Instrumentation | 2016
Daniel Magalotti; L. Alunni; Nicolo Vladi Biesuz; G. M. Bilei; S. Citraro; Francesco Crescioli; Livio Fanò; G. Fedi; G. Magazzu; L. Servoli; Loriano Storchi; F. Palla; P. Placidi; E. Rossi; A. Spiezia
The increment of luminosity at HL-LHC will require the introduction of tracker information at Level-1 trigger system for the experiments in order to maintain an acceptable trigger rate for selecting interesting events despite the one order of increased magnitude in the minimum bias interactions. In order to extract the track information in the required latency (~ 5–10 μ s depending on the experiment), a dedicated hardware processor needs to be used. We here propose a prototype system (Pattern Recognition Mezzanine) as core of pattern recognition and track fitting for HL-LHC experiments, combining the power of both Associative Memory custom ASIC and modern Field Programmable Gate Array (FPGA) devices.
nuclear science symposium and medical imaging conference | 2013
D. Calabro; R. Cipriani; S. Citraro; S. Donati; P. Giannetti; A. Lanza; Pierluigi Luciano; D. Magalotti; M. Piendibene
The Associative Memory (AM) system, a major component of the FastTracker (FTK) processor, is designed to perform pattern matching using the information from the silicon tracking detectors of the ATLAS experiment. It finds track candidates at low resolution that are sent to the track fitting stage. The system has to support challenging data traffic, handled by a group of modern low-cost FPGAs, the Xilinx Artix 7 chips, which have Low-Power Gigabit Transceivers (GTPs). Each GTP is a combined transmitter and receiver capable of operating at data rates up to 7 Gb/s. The paper reports on the design and initial tests of the most recent version of the AM system, based on the new AM chip design which uses serialized I/O. An estimation of the power consumption of the final system is also provided and the cooling system design is described. The first cooling test results are reported.
international conference on modern circuits and systems technologies | 2017
M Ali Mirzaei; Vincent Voisin; A. Annovi; Guillaume Baulieu; Matteo Beretta; Giovanni Calderini; S. Citraro; Francesco Crescioli; Geoffrey Galbit; Valentino Liberali; Seyed Ruhollah Shojaii; Alberto Stabile; William Tromeur; S. Viret
we present a system architecture made of a motherboard with a Xilinx Zynq System on Chip (SoC) and a mezzanine board equipped with an Associative Memory chip (AM). The proposed architecture is designed to serve as an accelerator of general purpose algorithms based on pipeline processing and pattern recognition. We present the open source software and firmware developed to fully exploit the available communication channels between the ARM CPU and the FPGA using Direct Memory Access (DMA) technique and the AM using Multi-Gigabit Transceivers (MGT). We report the measured performances and discuss potential applications and future developments. The proposed architecture is compact, portable and provide a large communication bandwidth between components.
IEEE Transactions on Nuclear Science | 2017
Calliope Louisa Sotiropoulou; I. Maznas; S. Citraro; A. Annovi; L. S. Ancu; R. Beccherle; F. Bertolucci; Nicolo Vladi Biesuz; D. Calabro; Francesco Crescioli; D. Dimas; Mauro Dell'Orso; S. Donati; Christos Gentsos; P. Giannetti; S. Gkaitatzis; J. Gramling; V. Greco; P. Kalaitzidis; K. Kordas; N. Kimura; Takashi Kubota; A. Iovene; A. Lanza; P. Luciano; B. Magnin; K. Mermikli; H. Nasimi; A. Negri; S. Nikolaidis
The associative memory (AM) system of fast tracker (FTK) processor has been designed for the tracking trigger upgrade to the ATLAS detector at the Conseil Europeen Pour La Recherche Nucleaire large hadron collider. The system performs pattern matching (PM) using the detector hits of particles in the ATLAS silicon tracker. The AM system is the main processing element of FTK and is mainly based on the use of application-specified integrated circuits (ASICs) (AM chips) designed to execute PM with a high degree of parallelism. It finds track candidates at low resolution which become seeds for a full resolution track fitting. The AM system implementation is based on a collection of large 9U Versa Module Europa (VME) boards, named “serial link processors” (AMBSLPs). On these boards, a huge traffic of data is implemented on a network of 900 2-Gb/s serial links. The complete AM-based processor consumes much less power (~50 kW) than its CPU equivalent and its size is much smaller. The AMBSLP has a power consumption of ~250 W and there will be 16 of them in a crate. This results in unusually large power consumption for a VME crate and the need for complex custom infrastructure in order to have sufficient cooling. This paper reports on the design and testing of the infrastructures needed to run and cool the system which will include 16 AMBSLPs in the same crate, the integration of the AMBSLP inside a first FTK slice, the performance of the produced prototypes (both hardware and firmware), as well as their tests in the global FTK integration. This is an important milestone to be satisfied before the FTK production.
IEEE Transactions on Nuclear Science | 2017
Christos Gentsos; G. Volpi; S. Gkaitatzis; P. Giannetti; S. Citraro; Francesco Crescioli; K. Kordas; Spiridon Nikolaidis
The Fast Tracker (FTK) executes real-time tracking for online event selection in the ATLAS experiment. Data processing speed is achieved by exploiting pipelining and parallel processing. Track reconstruction is executed in two stages. The first stage, implemented on custom application-specific integrated circuit (ASICs) called associative memory (AM) chips, performs pattern matching (PM) to identify track candidates in low resolution. The second stage, implemented on field programmable gate arrays (FPGAs), builds on the PM results, performing track fitting in full resolution. The use of such a parallelized architecture for real-time event selection opens up a new, huge computing problem related to the analysis of the acquired samples. Millions of events have to be simulated to determine the efficiency and the properties of the reconstructed tracks with a small statistical error. The AM chip emulation is a computationally intensive task when implemented in software running on commercial resources. This paper proposes the use of a hardware coprocessor to solve this problem efficiently. We report on the implementation and performance of all the functions requiring massive computing power in a modern, compact embedded system for track reconstruction. That system is the miniaturization of the complex FTK processing unit, which is also well suited for powering applications outside the realm of high energy physics.
nuclear science symposium and medical imaging conference | 2015
A. Annovi; F. Bertolucci; N. Biesuz; D. Calabro; G. Calderini; S. Citraro; Francesco Crescioli; D. Dimas; Mauro Dell'Orso; S. Donati; Christos Gentsos; P. Giannetti; S. Gkaitatzis; V. Greco; P. Kalaitzidis; K. Kordas; N. Kimura; T. Kubota; A. Lanza; P. Luciano; B. Magnin; I. Maznas; K. Mermikli; H. Nasimi; Spyridon Nikolaidis; M. Piendibene; A. Sakellariou; D. Sampsonidis; C.-L. Sotiropoulou; G. Volpi
The Associative Memory (AM) system of the Fast TracKer (FTK) processor has been designed to perform pattern matching using as input the data from the silicon tracker in the ATLAS experiment. The AM is the primary component of the FTK system and is designed using ASIC technology (the AM chip) to execute pattern matching with a high degree of parallelism. The FTK system finds track candidates at low resolution that are seeds for a full resolution track fitting. The AM system implementation is named “Serial Link Processor” and is based on an extremely powerful network of 2 Gb/s serial links to sustain a huge traffic of data. This paper reports on the design of the Serial Link Processor consisting of two types of boards, the Little Associative Memory Board (LAMB), a mezzanine where the AM chips are mounted, and the Associative Memory Board (AMB), a 9U VME motherboard which hosts four LAMB daughterboards. We also report on the performance of the prototypes (both hardware and firmware) produced and tested in the global FTK integration, an important milestone to be satisfied before the FTK production.
nuclear science symposium and medical imaging conference | 2015
Christos Gentsos; Francesco Crescioli; F. Bertolucci; Daniel Magalotti; S. Citraro; K. Kordas; Spiridon Nikolaidis
Real time tracking is a key ingredient for online event selection at hadron colliders. The Silicon Vertex Tracker at the CDF experiment and the Fast Tracker at ATLAS are two successful examples of the importance of dedicated hardware to reconstruct full events at hadron colliders. We present the future evolution of this technology, for applications to the High Luminosity runs at the Large Hadron Collider where Data processing speed will be achieved with custom VLSI pattern recognition and linearized track fitting executed inside modern FPGAs, exploiting deep pipelining, extensive parallelism, and efficient use of available resources. In the current system, one large FPGA executes track fitting in full resolution inside low resolution candidate tracks found by a set of custom ASIC devices, called Associative Memories. The FTK dual structure, based on the cooperation of VLSI AM and programmable FPGAs, will remain, but we plan to increase the FPGA parallelism by associating one FPGA to each AM chip. Implementing the two devices in a single package would achieve further performance improvements, plus miniaturization and integration of the state of the art prototypes. We present the new architecture, the design of the FPGA logic performing all the complementary functions of the pattern matching inside the AM, the tests performed on hardware.
international conference on electronics, circuits, and systems | 2015
A. Annovi; A. Baschirotto; Matteo Beretta; Nicolo Vladi Biesuz; S. Citraro; Francesco Crescioli; Marcello De Matteis; Federico Fary; Luca Frontini; P. Giannetti; Valentino Liberali; Pierluigi Luciano; F. Palla; Alessandro Pezzotta; Seyed Ruhollah Shojaii; Calliope-Louisa Sotiropoulou; Alberto Stabile
In this paper we describe a Content Addressable Memory architecture designed in 28 nm CMOS technology and based on the 65 nm XORAM cell previously developed. The cell is composed by two main blocks: a 6T SRAM, and a 4T XOR logic gate. Each XORAM cell makes a bitwise comparison between input data and stored data. The memory is organized in 18-bit words, and all the 18 XOR outputs bits must have a low logic value to trigger a high logic value of the single bit match line. A 18-input NOR gate performs this operation. The memory operation is triggered by the change of the least significant bit of the 18-bit input word, which is delayed w.r.t. the other bits. In this way, the logic does not require any clock. The proposed architecture is based on CMOS combinational logic, and it does not require any precharge operation, nor control and timing logic. The Associative Memory block is useful for several pattern recognition tasks, such as track recognition in high energy physics experiments, and image recognition for medical applications.