Featured Researches

Artificial Intelligence

Job2Vec: Job Title Benchmarking with Collective Multi-View Representation Learning

Job Title Benchmarking (JTB) aims at matching job titles with similar expertise levels across various companies. JTB could provide precise guidance and considerable convenience for both talent recruitment and job seekers for position and salary calibration/prediction. Traditional JTB approaches mainly rely on manual market surveys, which is expensive and labor-intensive. Recently, the rapid development of Online Professional Graph has accumulated a large number of talent career records, which provides a promising trend for data-driven solutions. However, it is still a challenging task since (1) the job title and job transition (job-hopping) data is messy which contains a lot of subjective and non-standard naming conventions for the same position (e.g., Programmer, Software Development Engineer, SDE, Implementation Engineer), (2) there is a large amount of missing title/transition information, and (3) one talent only seeks limited numbers of jobs which brings the incompleteness and randomness modeling job transition patterns. To overcome these challenges, we aggregate all the records to construct a large-scale Job Title Benchmarking Graph (Job-Graph), where nodes denote job titles affiliated with specific companies and links denote the correlations between jobs. We reformulate the JTB as the task of link prediction over the Job-Graph that matched job titles should have links. Along this line, we propose a collective multi-view representation learning method (Job2Vec) by examining the Job-Graph jointly in (1) graph topology view, (2)semantic view, (3) job transition balance view, and (4) job transition duration view. We fuse the multi-view representations in the encode-decode paradigm to obtain a unified optimal representation for the task of link prediction. Finally, we conduct extensive experiments to validate the effectiveness of our proposed method.

Read more
Artificial Intelligence

Joint Spatio-Textual Reasoning for Answering Tourism Questions

Our goal is to answer real-world tourism questions that seek Points-of-Interest (POI) recommendations. Such questions express various kinds of spatial and non-spatial constraints, necessitating a combination of textual and spatial reasoning. In response, we develop the first joint spatio-textual reasoning model, which combines geo-spatial knowledge with information in textual corpora to answer questions. We first develop a modular spatial-reasoning network that uses geo-coordinates of location names mentioned in a question, and of candidate answer POIs, to reason over only spatial constraints. We then combine our spatial-reasoner with a textual reasoner in a joint model and present experiments on a real world POI recommendation task. We report substantial improvements over existing models with-out joint spatio-textual reasoning.

Read more
Artificial Intelligence

Joint aggregation of cardinal and ordinal evaluations with an application to a student paper competition

An important problem in decision theory concerns the aggregation of individual rankings/ratings into a collective evaluation. We illustrate a new aggregation method in the context of the 2007 MSOM's student paper competition. The aggregation problem in this competition poses two challenges. Firstly, each paper was reviewed only by a very small fraction of the judges; thus the aggregate evaluation is highly sensitive to the subjective scales chosen by the judges. Secondly, the judges provided both cardinal and ordinal evaluations (ratings and rankings) of the papers they reviewed. The contribution here is a new robust methodology that jointly aggregates ordinal and cardinal evaluations into a collective evaluation. This methodology is particularly suitable in cases of incomplete evaluations -- i.e., when the individuals evaluate only a strict subset of the objects. This approach is potentially useful in managerial decision making problems by a committee selecting projects from a large set or capital budgeting involving multiple priorities.

Read more
Artificial Intelligence

Justicia: A Stochastic SAT Approach to Formally Verify Fairness

As a technology ML is oblivious to societal good or bad, and thus, the field of fair machine learning has stepped up to propose multiple mathematical definitions, algorithms, and systems to ensure different notions of fairness in ML applications. Given the multitude of propositions, it has become imperative to formally verify the fairness metrics satisfied by different algorithms on different datasets. In this paper, we propose a \textit{stochastic satisfiability} (SSAT) framework, Justicia, that formally verifies different fairness measures of supervised learning algorithms with respect to the underlying data distribution. We instantiate Justicia on multiple classification and bias mitigation algorithms, and datasets to verify different fairness metrics, such as disparate impact, statistical parity, and equalized odds. Justicia is scalable, accurate, and operates on non-Boolean and compound sensitive attributes unlike existing distribution-based verifiers, such as FairSquare and VeriFair. Being distribution-based by design, Justicia is more robust than the verifiers, such as AIF360, that operate on specific test samples. We also theoretically bound the finite-sample error of the verified fairness measure.

Read more
Artificial Intelligence

Knowledge Adaption for Demand Prediction based on Multi-task Memory Neural Network

Accurate demand forecasting of different public transport modes(e.g., buses and light rails) is essential for public service operation.However, the development level of various modes often varies sig-nificantly, which makes it hard to predict the demand of the modeswith insufficient knowledge and sparse station distribution (i.e.,station-sparse mode). Intuitively, different public transit modes mayexhibit shared demand patterns temporally and spatially in a this http URL such, we propose to enhance the demand prediction of station-sparse modes with the data from station-intensive mode and designaMemory-Augmented Multi-taskRecurrent Network (MATURE)to derive the transferable demand patterns from each mode andboost the prediction of station-sparse modes through adaptingthe relevant patterns from the station-intensive mode. Specifically,MATUREcomprises three components: 1) a memory-augmentedrecurrent network for strengthening the ability to capture the long-short term information and storing temporal knowledge of eachtransit mode; 2) a knowledge adaption module to adapt the rele-vant knowledge from a station-intensive source to station-sparsesources; 3) a multi-task learning framework to incorporate all theinformation and forecast the demand of multiple modes jointly.The experimental results on a real-world dataset covering four pub-lic transport modes demonstrate that our model can promote thedemand forecasting performance for the station-sparse modes.

Read more
Artificial Intelligence

Knowledge Infused Policy Gradients for Adaptive Pandemic Control

COVID-19 has impacted nations differently based on their policy implementations. The effective policy requires taking into account public information and adaptability to new knowledge. Epidemiological models built to understand COVID-19 seldom provide the policymaker with the capability for adaptive pandemic control (APC). Among the core challenges to be overcome include (a) inability to handle a high degree of non-homogeneity in different contributing features across the pandemic timeline, (b) lack of an approach that enables adaptive incorporation of public health expert knowledge, and (c) transparent models that enable understanding of the decision-making process in suggesting policy. In this work, we take the early steps to address these challenges using Knowledge Infused Policy Gradient (KIPG) methods. Prior work on knowledge infusion does not handle soft and hard imposition of varying forms of knowledge in disease information and guidelines to necessarily comply with. Furthermore, the models do not attend to non-homogeneity in feature counts, manifesting as partial observability in informing the policy. Additionally, interpretable structures are extracted post-learning instead of learning an interpretable model required for APC. To this end, we introduce a mathematical framework for KIPG methods that can (a) induce relevant feature counts over multi-relational features of the world, (b) handle latent non-homogeneous counts as hidden variables that are linear combinations of kernelized aggregates over the features, and (b) infuse knowledge as functional constraints in a principled manner. The study establishes a theory for imposing hard and soft constraints and simulates it through experiments. In comparison with knowledge-intensive baselines, we show quick sample efficient adaptation to new knowledge and interpretability in the learned policy, especially in a pandemic context.

Read more
Artificial Intelligence

Knowledge discovery from emergency ambulance dispatch during COVID-19: A case study of Nagoya City, Japan

Accurate forecasting of medical service requirements is an important big data problem that is crucial for resource management in critical times such as natural disasters and pandemics. With the global spread of coronavirus disease 2019 (COVID-19), several concerns have been raised regarding the ability of medical systems to handle sudden changes in the daily routines of healthcare providers. One significant problem is the management of ambulance dispatch and control during a pandemic. To help address this problem, we first analyze ambulance dispatch data records from April 2014 to August 2020 for Nagoya City, Japan. Significant changes were observed in the data during the pandemic, including the state of emergency (SoE) declared across Japan. In this study, we propose a deep learning framework based on recurrent neural networks to estimate the number of emergency ambulance dispatches (EADs) during a SoE. The fusion of data includes environmental factors, the localization data of mobile phone users, and the past history of EADs, thereby providing a general framework for knowledge discovery and better resource management. The results indicate that the proposed blend of training data can be used efficiently in a real-world estimation of EAD requirements during periods of high uncertainties such as pandemics.

Read more
Artificial Intelligence

Knowledge engineering mixed-integer linear programming: constraint typology

In this paper, we investigate the constraint typology of mixed-integer linear programming MILP formulations. MILP is a commonly used mathematical programming technique for modelling and solving real-life scheduling, routing, planning, resource allocation, timetabling optimization problems, providing optimized business solutions for industry sectors such as: manufacturing, agriculture, defence, healthcare, medicine, energy, finance, and transportation. Despite the numerous real-life Combinatorial Optimization Problems found and solved, and millions yet to be discovered and formulated, the number of types of constraints, the building blocks of a MILP, is relatively much smaller. In the search of a suitable machine readable knowledge representation for MILPs, we propose an optimization modelling tree built based upon an MILP ontology that can be used as a guidance for automated systems to elicit an MILP model from end-users on their combinatorial business optimization problems.

Read more
Artificial Intelligence

LTL2Action: Generalizing LTL Instructions for Multi-Task RL

We address the problem of teaching a deep reinforcement learning (RL) agent to follow instructions in multi-task environments. The combinatorial task sets we target consist of up to 10 39 unique tasks. We employ a well-known formal language -- linear temporal logic (LTL) -- to specify instructions, using a domain-specific vocabulary. We propose a novel approach to learning that exploits the compositional syntax and the semantics of LTL, enabling our RL agent to learn task-conditioned policies that generalize to new instructions, not observed during training. The expressive power of LTL supports the specification of a diversity of complex temporally extended behaviours that include conditionals and alternative realizations. To reduce the overhead of learning LTL semantics, we introduce an environment-agnostic LTL pretraining scheme which improves sample-efficiency in downstream environments. Experiments on discrete and continuous domains demonstrate the strength of our approach in learning to solve (unseen) tasks, given LTL instructions.

Read more
Artificial Intelligence

Landscape of Machine Implemented Ethics

This paper surveys the state-of-the-art in machine ethics, that is, considerations of how to implement ethical behaviour in robots, unmanned autonomous vehicles, or software systems. The emphasis is on covering the breadth of ethical theories being considered by implementors, as well as the implementation techniques being used. There is no consensus on which ethical theory is best suited for any particular domain, nor is there any agreement on which technique is best placed to implement a particular theory. Another unresolved problem in these implementations of ethical theories is how to objectively validate the implementations. The paper discusses the dilemmas being used as validating 'whetstones' and whether any alternative validation mechanism exists. Finally, it speculates that an intermediate step of creating domain-specific ethics might be a possible stepping stone towards creating machines that exhibit ethical behaviour.

Read more

Ready to get started?

Join us today