Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where D. Coolbaugh is active.

Publication


Featured researches published by D. Coolbaugh.


bipolar/bicmos circuits and technology meeting | 2001

A 0.18 /spl mu/m BiCMOS technology featuring 120/100 GHz (f/sub T//f/sub max/) HBT and ASIC-compatible CMOS using copper interconnect

Alvin J. Joseph; D. Coolbaugh; Michael J. Zierak; R. Wuthrich; Peter J. Geiss; Zhong-Xiang He; Xuefeng Liu; Bradley A. Orner; Jeffrey B. Johnson; G. Freeman; David C. Ahlgren; Basanth Jagannathan; Louis D. Lanzerotti; John C. Malinowski; Huajie Chen; J. Chu; Peter B. Gray; Robb Allen Johnson; James S. Dunn; Seshadri Subbanna; Kathryn T. Schonenberg; David L. Harame; R. Groves; K. Watson; D. Jadus; M. Meghelli; A. Rylyakov

A BiCMOS technology is presented that integrates a high performance NPN (f/sub T/=120 GHz and f/sub max/=100 GHz), ASIC compatible 0.11 /spl mu/m L/sub eff/ CMOS, and a full suite of passive elements. Significant HBT performance enhancement compared to previously published results has been achieved through further collector and base profile optimization guided by process and device simulations. Base transit time reduction was achieved by simultaneously increasing the Ge ramp and by limiting the base diffusion with the addition of carbon doping to SiGe epitaxial base. This paper describes IBMs next generation SiGe BiCMOS production technology targeted at the communications market.


bipolar/bicmos circuits and technology meeting | 1999

A 0.24 /spl mu/m SiGe BiCMOS mixed-signal RF production technology featuring a 47 GHz f/sub t/ HBT and 0.18 /spl mu/m L/sub ett/ CMOS

S. St Onge; David L. Harame; James S. Dunn; Seshadri Subbanna; David C. Ahlgren; G. Freeman; Basanth Jagannathan; J. Jeng; Kathryn T. Schonenberg; Kenneth J. Stein; R. Groves; D. Coolbaugh; Natalie B. Feilchenfeld; Peter J. Geiss; M. Gordon; Peter B. Gray; Douglas B. Hershberger; S. Kilpatrick; Robb Allen Johnson; Alvin J. Joseph; Louis D. Lanzerotti; John C. Malinowski; Bradley A. Orner; Michael J. Zierak

A new base-after-gate integration scheme has been developed to integrate a 47 GHz f/sub t/, 65 GHz F/sub max/SiGe HBT process with a 0.24 /spl mu/m CMOS technology having 0.18 /spl mu/m L/sub eff/ and 5 nm gate oxide. We discuss the benefits and challenges of this integration scheme which decouples the HBT from the CMOS thermal cycles. We also describe the resulting 0.24 /spl mu/m SiGe BiCMOS technology, BiCMOS 6HP, which includes a 7 nm dual gate oxide option and full suite of passive components. The technology provides a high level of integration for mixed-signal RF applications.


bipolar/bicmos circuits and technology meeting | 2002

High performance, low complexity 0.18 /spl mu/m SiGe BiCMOS technology for wireless circuit applications

Natalie B. Feilchenfeld; Louis D. Lanzerotti; David C. Sheridan; Ryan W. Wuthrich; Peter J. Geiss; D. Coolbaugh; Peter B. Gray; J. He; P. Demag; J. Greco; T. Larsen; V. Patel; Michael J. Zierak; Wade J. Hodge; Jay Rascoe; J. Trappasso; Bradley A. Orner; A. Norris; Douglas B. Hershberger; B. Voegeli; Steven H. Voldman; Robert M. Rassel; V. Ramachandrian; Michael L. Gautsch; Ebenezer E. Eshun; R. Hussain; D. Jordan; S. St Onge; James S. Dunn

High frequency performance at low current density and low wafer cost is essential for low power wireless BiCMOS technologies. We have developed a low-complexity, ASIC-compatible, 0.18 /spl mu/m SiGe BiCMOS technology for wireless applications that offers 3 different breakdown voltage NPNs; with the high performance device achieving F/sub t//F/sub max/ of 60/85 GHz with a 3.0 V BV/sub CEO/. In addition, a full suite of high performance passive devices complement the state-of-the-art SiGe wireless HBTs.


bipolar/bicmos circuits and technology meeting | 2004

A low complexity 0.13 /spl mu/ SiGe BiCMOS technology for wireless and mixed signal applications

Louis D. Lanzerotti; Natalie B. Feilchenfeld; D. Coolbaugh; James A. Slinkman; Peter B. Gray; David C. Sheridan; J. Higgins; Wade J. Hodge; M. Gordon; T. Larsen; Michael L. Gautsch; P. Lindgren; R. Murty; Jay Rascoe; K. Watson; T. Stamper; Ebenezer E. Eshun; J. He; K. Downes; Robert M. Rassel; J. Greco; B. Labelle; S. Sweeney; Kenneth J. Stein; R. Bolam; K. Vaed; B. Omer; Alvin J. Joseph; S. St Onge; J. Dunn

We present IBMs next-generation, cost-performance-optimized BiCMOS technology (BiCMOS 8WL) which combines a state-of-the-art suite of SiGe NPNs, foundry compatible 0.13 μm CMOS, and a rich set of modular passive devices. Intended for a wide variety of supply voltages, the technology, features three different performance NPNs and standard, dual oxide, zero V t , and junction isolated FETs. Optimized for wireless and mixed signal applications, BiCMOS 8WL will enable system on a chip integration for 3G cellular applications.


topical meeting on silicon monolithic integrated circuits in rf systems | 2004

A manufacturable high-k MIM dielectric with outstanding reliability and voltage linearity for RF and mixed-signal technologies

Kunal Vaed; Ebenezer E. Eshun; R. Bolam; Kenneth J. Stein; D. Coolbaugh; David C. Ahlgren; James S. Dunn

We demonstrate the simultaneous optimization of 100,000 POH reliability and voltage linearity (<40 ppm/V) for a high-k MIM dielectric (4.5 fF/m/sup 2/) that is both Al and Cu BEOL compatible. Also, we discuss the scaling of dielectric films to achieve excellent bias linearity, while attaining a capacitance density of 7.2 fF/m/sup 2/.


bipolar/bicmos circuits and technology meeting | 2008

High and low density complimentary MIM capacitors fabricated simultaneously in advanced RFCMOS and BiCMOS technologies

Zhong-Xiang He; D. Daley; R. Bolam; D. Vanslette; F. Chen; E. Cooney; D. Mosher; Natalie B. Feilchenfeld; K.M. Newton; Ebenezer E. Eshun; Robert M. Rassel; John J. Benoit; D. Coolbaugh; S. St Onge; James S. Dunn

Two MIM capacitors with capacitance density of 11 and 0.48 fF/um2 were fabricated simultaneously using IBM-s 0.13 um SiGe 8 WL BiCMOS process. Results from DC parametric measurement indicate that these two capacitors compliment each other extremely well.


topical meeting on silicon monolithic integrated circuits in rf systems | 2007

High Quality Passive Devices Fabricated Inexpensively in Advanced RF-CMOS Technologies with Copper BEOL

Zhong-Xiang He; M. Erturk; Hanyi Ding; M. Moon; E. Gordon; D. Daley; Anthony K. Stamper; D. Coolbaugh; Ebenezer E. Eshun; M. Gordon; Alvin J. Joseph; S. St Onge; James S. Dunn

High quality factor inductors and highly matched low capacitance density horizontal parallel plate metal-insulator-metal capacitors were fabricated in 130nm RF-CMOS technology with minimal or zero processing step addition. The high quality factor inductors were made using a novel triple damascene integration technique. Peak quality factor of 26 was demonstrated for a 0.3nH inductor. The low capacitance density MIM capacitors were fabricated using standard BEOL copper planes with zero addition of processing steps. Capacitance density value of 0.66 fF/mum 2 was achieved for a six level copper wiring BEOL. Impact of copper plane was characterized to ensure optimal manufacturing production


bipolar/bicmos circuits and technology meeting | 2007

Electrically Programmable Fuses for Analog and Mixed Signal Applications in Silicon Germanium BiCMOS Technologies

Ephrem G. Gebreselasie; Steven H. Voldman; Zhong-Xiang He; D. Coolbaugh; Robert M. Rassel; T. Kirihata; A. Paganini; C.G. Cox; S.A. Mongeon; S. St Onge; James S. Dunn; R. E. Halbach; J. Lukaitis


electrical overstress/electrostatic discharge symposium | 2005

The influence of high resistivity substrates on CMOS latchup robustness

Steven H. Voldman; Ephrem G. Gebreselasie; Xuefeng Liu; D. Coolbaugh; Alvin J. Joseph


Symposium on ULSI process integration | 2005

Applications focused trends in sige bicmos technologies

S. St Onge; Alvin J. Joseph; Louis D. Lanzerotti; Natalie B. Feilchenfeld; D. Coolbaugh; B. Omer; J. Dunn; D. L. Harame

Researchain Logo
Decentralizing Knowledge