Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where J. Newbury is active.

Publication


Featured researches published by J. Newbury.


symposium on vlsi technology | 2002

Characteristics and device design of sub-100 nm strained Si N- and PMOSFETs

K. Rim; Jack O. Chu; Huajie Chen; Keith A. Jenkins; Thomas S. Kanarsky; K. Y. Lee; Anda C. Mocuta; Huilong Zhu; R. Roy; J. Newbury; John A. Ott; K. Petrarca; P. M. Mooney; D. Lacey; Steven J. Koester; Kevin K. Chan; Diane C. Boyd; Meikei Ieong; H.-S.P. Wong

Current drive enhancements were demonstrated in the strained-Si PMOSFETs with sub-100 nm physical gate lengths for the first time, as well as in the NMOSFETs with well-controlled threshold voltage V/sub T/ and overlap capacitance C/sub OV/ characteristics for L/sub poly/ and L/sub eff/ below 80 nm and 60 nm. A 110% enhancement in the electron mobility was observed in the strained Si devices with 1.2% tensile strain (28% Ge content in the relaxed SiGe buffer), along with a 45% increase in the peak hole mobility.


international electron devices meeting | 2002

Metal-gate FinFET and fully-depleted SOI devices using total gate silicidation

J. Kedzierski; E. Nowak; T. Kanarsky; Yuan Zhang; Diane C. Boyd; R. Carruthers; Cyril Cabral; R. Amos; Christian Lavoie; R. Roy; J. Newbury; E. Sullivan; J. Benedict; P. Saunders; K. Wong; D. Canaperi; M. Krishnan; K.-L. Lee; B.A. Rainey; David M. Fried; P. Cottrell; H.-S.P. Wong; Meikei Ieong; Wilfried Haensch

Metal-gate FinFET and FDSOI devices were fabricated using total gate silicidation. Devices satisfy the following metal-gate technology requirements: ideal mobility, low gate leakage, high transconductance, competitive I/sub on//I/sub off/, and adjustable V/sub t/. Six silicide gate materials are presented, as well as two silicide workfunction engineering methods.


international electron devices meeting | 2009

High performance and highly uniform gate-all-around silicon nanowire MOSFETs with wire size dependent scaling

Sarunya Bangsaruntip; Guy M. Cohen; Amlan Majumdar; Y. Zhang; Sebastian U. Engelmann; Nicholas C. M. Fuller; Lynne M. Gignac; Surbhi Mittal; J. Newbury; M. Guillorn; Tymon Barwicz; Lidija Sekaric; Martin M. Frank; Jeffrey W. Sleight

We demonstrate undoped-body, gate-all-around (GAA) Si nanowire (NW) MOSFETs with excellent electrostatic scaling. These NW devices, with a TaN/Hf-based gate stack, have high drive-current performance with NFET/PFET I<inf>DSAT</inf> = 825/950 µA/µm (circumference-normalized) or 2592/2985 µA/µm (diameter-normalized) at supply voltage V<inf>DD</inf> = 1 V and off-current I<inf>OFF</inf> = 15 nA/µm. Superior NW uniformity is obtained through the use of a combined hydrogen annealing and oxidation process. Clear scaling of short-channel effects versus NW size is observed.


IEEE Electron Device Letters | 2010

Sharp Reduction of Contact Resistivities by Effective Schottky Barrier Lowering With Silicides as Diffusion Sources

Zhen Zhang; F. Pagette; C. D'Emic; Bin Yang; Christian Lavoie; Yu Zhu; Marinus Hopstaken; Siegfried L. Maurer; Conal E. Murray; Michael A. Guillorn; David P. Klaus; James J. Bucchignano; John Bruley; John A. Ott; A. Pyzyna; J. Newbury; W. Song; V. Chhabra; G. Zuo; K.-L. Lee; Ahmet S. Ozcan; J. Silverman; Qiqing Ouyang; Dae-Gyu Park; Wilfried Haensch; Paul M. Solomon

An extremely low contact resistivity of 6-7 × 10<sup>-9</sup> Ω·cm<sup>2</sup> between Ni<sub>0.9</sub>Pt<sub>0.1</sub>Si and heavily doped Si is achieved through Schottky barrier engineering by dopant segregation. In this scheme, the implantation of B or As is performed into silicide followed by a low-temperature drive-in anneal. Reduction of effective Schottky barrier height is manifested in the elimination of nonlinearities in IV characteristics.


international electron devices meeting | 2003

Threshold voltage control in NiSi-gated MOSFETs through silicidation induced impurity segregation (SIIS)

Jakub Kedzierski; Diane C. Boyd; Paul Ronsheim; Sufi Zafar; J. Newbury; John A. Ott; Cyril Cabral; M. Ieong; Wilfried Haensch

Silicidation-induced impurity segregation was found to be an excellent method for adjusting the workfunction of NiSi gates. Continuous workfunction control over 300 mV was obtained with P, As, and Sb used as gate impurities. Fully depleted silicon-on-insulator devices were fabricated with a tunable V/sub t/.


symposium on vlsi technology | 2008

FinFET performance advantage at 22nm: An AC perspective

Michael A. Guillorn; Josephine B. Chang; Andres Bryant; Nicholas C. M. Fuller; Omer H. Dokumaci; X. Wang; J. Newbury; K. Babich; John A. Ott; B. Haran; Roy Yu; Christian Lavoie; David P. Klaus; Yuan Zhang; E. Sikorski; W. Graham; B. To; M. Lofaro; J. Tornello; Dinesh Koli; B. Yang; A. Pyzyna; D. Neumeyer; M. Khater; Atsushi Yagishita; Hirohisa Kawasaki; Wilfried Haensch

At the 22 nm node, we estimate that superior electrostatics and reduced junction capacitance in FinFETs may provide a 13~23% reduction in delay relative to planar FETs. However, this benefit is offset by enhanced gate-to-source/drain capacitance (Cgs) in FinFETs. Here, we measure FinFET Cgs capacitance at 22 nm-like dimensions and determine that, with optimization, the FinFET capacitance penalty can be limited to <6%, resulting in an overall advantage of up to 17% over a planar technology.


IEEE Circuits & Devices | 2003

Two gates are better than one [double-gate MOSFET process]

Paul M. Solomon; Kathryn W. Guarini; Yuan Zhang; Kevin K. Chan; Erin C. Jones; Guy M. Cohen; A. Krasnoperova; Maria Ronay; O. Dokumaci; H. J. Hovel; J.J. Bucchignano; Cyril Cabral; Christian Lavoie; V. Ku; Diane C. Boyd; K.S. Petrarca; J. H. Yoon; Inna V. Babich; J. Treichler; Paul M. Kozlowski; J. Newbury; C. D'Emic; R.M. Sicina; J. Benedict; H.-S.P. Wong

A planar self-aligned double-gate MOSFET process has been implemented where a unique sidewall source/drain structure (S/D) permits self-aligned patterning of the back-gate layer after the S/D structure is in place. This allows coupling the silicon thickness control inherent in a planar, unpatterned layer with VLSI self-alignment techniques and also gives independently controlled front and back gates. The demanding structure led to process innovations primarily in front-end CMP, where planarity within 5 nm was achieved on an 8-in diameter wafer as well as in silicided silicon source/drain sidewalls, with minimal encroachment of the silicide. Double-gate FET (DGFET) operation is demonstrated, with good transport at both interfaces. Dense circuit layouts are achieved with multifinger devices, and logic inverters with back-gate-controlled load current as well as NOR logic using the two gates of a single transistor as inputs are demonstrated.


international electron devices meeting | 2013

Density scaling with gate-all-around silicon nanowire MOSFETs for the 10 nm node and beyond

Sarunya Bangsaruntip; K. Balakrishnan; S.-L Cheng; Josephine B. Chang; Markus Brink; Isaac Lauer; Robert L. Bruce; Sebastian U. Engelmann; A. Pyzyna; Guy M. Cohen; Lynne M. Gignac; Chris M. Breslin; J. Newbury; David P. Klaus; Amlan Majumdar; Jeffrey W. Sleight; M. Guillorn

We present results from gate-all-around (GAA) silicon nanowire (SiNW) MOSFETs fabricated using a process flow capable of achieving a nanowire pitch of 30 nm and a scaled gate pitch of 60 nm. We demonstrate for the first time that GAA SiNW devices can be integrated to density targets commensurate with CMOS scaling needs of the 10 nm node and beyond. In addition, this work achieves the highest performance for GAA SiNW NFETs at a gate pitch below 100 nm.


symposium on vlsi technology | 2004

Systematic study of pFET V/sub t/ with Hf-based gate stacks with poly-Si and FUSI gates

E. Cartier; Vijay Narayanan; E. P. Gusev; P. Jamison; Barry P. Linder; M. Steen; Kevin K. Chan; Martin M. Frank; Nestor A. Bojarczuk; M. Copel; S.A. Cohen; Sufi Zafar; A. Callegari; Michael A. Gribelyuk; Michael P. Chudzik; Cyril Cabral; R. Carruthers; C. D'Emic; J. Newbury; D. Lacey; Supratik Guha; Rajarao Jammy

The flatband/threshold voltages (V/sub fb//V/sub t/) in poly-Si gated pFETs with Hf-based gate dielectrics are shown to be set during poly-Si deposition and are found to remain virtually unchanged during gate implantation and activation, independent of the p-type dopant. The reaction of Si with HfO/sub 2/ at poly-Si deposition temperatures is identified as the root cause for the poor V/sub fb//V/sub t/ control. No improvement in V/sub t/ control is obtained by engineering physically closed Si/sub 3/N/sub 4/ barrier layers on HfO/sub 2/. It is furthermore shown for the first time that even when the gate is fully silicided (FUSI) large V/sub fb//V/sub t/ shifts are observed with HfO/sub 2/. Reduced pFET shifts are observed when Hf-silicates with low Hf content are used and further improvements are observed by using Al/sub 2/O/sub 3/ cap layers on silicates.


international electron devices meeting | 2004

Advanced gate stacks with fully silicided (FUSI) gates and high-/spl kappa/ dielectrics: enhanced performance at reduced gate leakage

E. P. Gusev; Cyril Cabral; B.P. Under; Young-Hee Kim; K. Maitra; Hasan M. Nayfeh; R. Amos; G. Biery; Nestor A. Bojarczuk; A. Callegari; R. Carruthers; S. Cohen; M. Copel; S. Fang; Martin M. Frank; Supratik Guha; Michael A. Gribelyuk; P. Jamison; Rajarao Jammy; Meikei Ieong; Jakub Kedzierski; P. Kozlowski; K. Ku; D. Lacey; D. LaTulipe; Vijay Narayanan; H. Ng; Phung T. Nguyen; J. Newbury; Vamsi Paruchuri

The key result in this work is that FUSI/HfSi/sub x/O/sub y/ gate stacks offer both significant gate leakage reduction (due to high-/spl kappa/) and drive current improvement at T/sub inv/ /spl sim/ 2 nm (due to: (i) elimination of poly depletion effect, /spl sim/ 0.5 nm, and (ii) the high mobility of HfSi/sub x/O/sub y/). We also demonstrate that threshold voltage for both PFETs and NFETs can be adjusted from midgap to the values of Vt(PFET)/spl sim/ -0.4 V and Vt(NFET) /spl sim/ + 0.3 V by poly-Si predoping by implantation (Al or As) and FUSI alloying. Significantly improved charge trapping (V/sub t/ stability) was found in the case of NiSi/ HfSi/sub x/O/sub y/ compared to the same gate electrode with HfO/sub 2/ dielectric.

Collaboration


Dive into the J. Newbury's collaboration.

Researchain Logo
Decentralizing Knowledge