Kevin A. Batson
IBM
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kevin A. Batson.
IEEE Journal of Solid-state Circuits | 2008
Leland Chang; Robert K. Montoye; Yutaka Nakamura; Kevin A. Batson; Richard J. Eickemeyer; Robert H. Dennard; Wilfried Haensch; Damir A. Jamsek
An eight-transistor (8T) cell is proposed to improve variability tolerance and low-voltage operation in high-speed SRAM caches. While the cell itself can be designed for exceptional stability and write margins, array-level implications must also be considered to achieve a viable memory solution. These constraints can be addressed by modifying traditional 6T-SRAM techniques and conceding some design complexity and area penalties. Altogether, 8T-SRAM can be designed without significant area penalty over 6T-SRAM while providing substantially improved variability tolerance and low-voltage operation with no need for secondary or dynamic power supplies. The proposed 8T solution is demonstrated in a high-performance 32 kb subarray designed in 65 nm PD-SOI CMOS that operates at 5.3 GHz at 1.2 V and 295 MHz at 0.41 V.
international solid-state circuits conference | 2011
Harold Pilo; Igor Arsovski; Kevin A. Batson; Geordie Braceras; John A. Gabric; Robert M. Houle; Steve Lamphier; Frank Pavlik; Adnan Seferagic; Liang-Yu Chen; Shang-Bin Ko; Carl J. Radens
A 64Mb SRAM macro is fabricated in a 32nm high-k metal-gate (HKMG) SOI technology [1]. Figure 14.1.1 shows the 0.154μm2 bitcell (BC). A 2× size reduction from the previous 45nm design [2] is enabled by an equal 2× reduction in BC area. No corner rounding of BC gates allows tighter overlay of gate electrode and active area. The introduction of HKMG provides a significant reduction in the equivalent oxide thickness, thereby reducing the Vt mismatch. This reduction allows aggressive scaling of device dimensions needed to achieve the small area footprint. A 0.7V VDDMIN operation is enabled by three assist features. Stability is improved by a bitline (BL) regulation scheme. Enhancements to the write path include an increase of 40% of BL boost voltage. Finally, a BC-tracking delay circuit improves both performance and yield across the process space.
symposium on vlsi circuits | 2007
Rajiv V. Joshi; R. Houle; Kevin A. Batson; D. Rodko; Pradip Patel; William V. Huott; Robert L. Franch; Yuen H. Chan; Donald W. Plass; S. Wilson; P. Wang
A fully functional read and half select disturb-free 1.2 Mb SRAM is demonstrated. Measured results show an operating range of 0.4 V to 1.5 V and -25degC to 100degC, speed of 6.6+ GHz at IV, 25degC and yield of 90-100%.
Archive | 2000
Kevin A. Batson; Robert E. Busch; Garrett Stephen Koch
Archive | 2001
Kevin A. Batson; Robert E. Busch; Albert M. Chu; Ezra D. B. Hall
Archive | 1996
Kevin A. Batson; Robert Anthony Ross
Archive | 2003
Kevin A. Batson; Geordie Braceras; Robert E. Busch; Gary Koch
Archive | 2009
Rajiv V. Joshi; Robert M. Houle; Kevin A. Batson
Archive | 2007
Rajiv V. Joshi; Robert L. Franch; Robert M. Houle; Kevin A. Batson
Archive | 2003
Kevin A. Batson; Robert E. Busch; Gary Koch; Fred J. Towler; Reid A. Wistort