Soon Aik Chew
Katholieke Universiteit Leuven
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Soon Aik Chew.
symposium on vlsi technology | 2015
Liesbeth Witters; Jerome Mitard; R. Loo; Steven Demuynck; Soon Aik Chew; Tom Schram; Zheng Tao; Andriy Hikavyy; Jianwu Sun; Alexey Milenin; Hans Mertens; C. Vrancken; Paola Favia; Marc Schaekers; Hugo Bender; Naoto Horiguchi; Robert Langer; K. Barla; D. Mocuta; Nadine Collaert; A. V-Y. Thean
Strained Ge p-channel FinFETs on Strain Relaxed SiGe are integrated for the first time on high density 45nm Fin pitch using a replacement channel approach on Si substrate. In comparison to our previous work on isolated sGe FinFETs [1], 14/16nm technology node compatible modules such as replacement metal gate and germanide-free local interconnect were implemented. The ION/IOFF benchmark shows the high density strained Ge p-FinFETs in this work outperform the best published isolated strained Ge on SiGe devices.
symposium on vlsi technology | 2016
Hans Mertens; Romain Ritzenthaler; Andriy Hikavyy; Min-Soo Kim; Zheng Tao; Kurt Wostyn; Soon Aik Chew; A. De Keersgieter; Geert Mannaert; Erik Rosseel; Tom Schram; K. Devriendt; Diana Tsvetanova; H. Dekkers; Steven Demuynck; Adrian Vaisman Chasin; E. Van Besien; Anish Dangol; S. Godny; Bastien Douhard; N. Bosman; O. Richard; Jef Geypen; Hugo Bender; K. Barla; D. Mocuta; Naoto Horiguchi; A. V-Y. Thean
We report on gate-all-around (GAA) n- and p-MOSFETs made of 8-nm-diameter vertically stacked horizontal Si nanowires (NWs). We show that these devices, which were fabricated on bulk Si substrates using an industry-relevant replacement metal gate (RMG) process, have excellent short-channel characteristics (SS = 65 mV/dec, DIBL = 42 mV/V for LG = 24 nm) at performance levels comparable to finFET reference devices. The parasitic channels below the Si NWs were effectively suppressed by ground plane (GP) engineering.
symposium on vlsi technology | 2014
Lars-Ake Ragnarsson; Soon Aik Chew; Harold Dekkers; M. Toledano Luque; B. Parvais; A. De Keersgieter; K. Devriendt; A. Van Ammel; Tom Schram; Naomi Yoshida; A. Phatak; K. Han; B. Colombeau; Adam Brand; Naoto Horiguchi; Aaron Thean
A scalable multi-VT enabled RMG CMOS integration process with highly conformal ALD TiN/TiAl/TiN is described. The multi-VT is implemented by metal gate tuning using two different options. The first relies on bottom-barrier thickness control, the second on implantation of nitrogen into the work function metal. A shift in the effective work function (eWF) of ~400 mV is realized by adjusting the TiN bottom barrier thickness underneath TiAl, while over 200 mV shifts are achieved by means of implantation of nitrogen into ALD TiN/TiAl/TiN. The gate-stack Tinv, JG, DIT and reliability as well as the device performance are shown to be unaffected by the multi VT process.
international electron devices meeting | 2016
Hans Mertens; Romain Ritzenthaler; Adrian Vaisman Chasin; Tom Schram; Eddy Kunnen; Andriy Hikavyy; Lars-Ake Ragnarsson; Harold Dekkers; Toby Hopf; Kurt Wostyn; K. Devriendt; Soon Aik Chew; Min-Soo Kim; Yoshiaki Kikuchi; Erik Rosseel; Geert Mannaert; S. Kubicek; Steven Demuynck; Anish Dangol; Niels Bosman; Jef Geypen; Patrick Carolan; Hugo Bender; K. Barla; Naoto Horiguchi; D. Mocuta
We report on the CMOS integration of vertically stacked gate-all-around (GAA) silicon nanowire MOSFETs, with matched threshold voltages (Vt, sat ∼ 0.35 V) for N- and P-type devices. The Vt setting is enabled by nanowire-compatible dual-work-function metal integration in a high-k last replacement metal gate process. Furthermore, we demonstrate that N- and P-type junction formation can influence nanowire release differently due to both implantation-induced SiGe/Si intermixing and doping effects. These findings underline that junction formation and nanowire release require co-optimization in GAA CMOS technologies.
symposium on vlsi technology | 2012
Lars-Ake Ragnarsson; Christoph Adelmann; Yuichi Higuchi; Karl Opsomer; A. Veloso; Soon Aik Chew; Erika Rohr; Emma Vecchio; Xiaoping Shi; K. Devriendt; F. Sebaai; Thomas Kauerauf; M. A. Pawlak; Tom Schram; Sven Van Elshocht; Naoto Horiguchi; Aaron Thean
Higher κ-value HfO<sub>2</sub> (κ~30) was evaluated in replacement metal gate pMOS devices. The higher-κ was achieved by doping and anneal of the HfO<sub>2</sub> causing crystallization into the cubic phase. The resulting gate-stack has up to 10<sup>3</sup> × lower gate-leakage current compared to a reference HfO<sub>2</sub>: J<sub>G</sub> at -1 V ~ 2 μA/cm<sup>2</sup> at EOT~9.7 Å. The better J<sub>G</sub> - EOT-scaling, result in performance and reliability improvements when normalized to the J<sub>G</sub>.
IEEE Transactions on Electron Devices | 2014
Romain Ritzenthaler; Tom Schram; Alessio Spessot; Christian Caillat; Marc Aoulaiche; Moon Ju Cho; K. B. Noh; Y. Son; Hoon Joo Na; Thomas Kauerauf; Bastien Douhard; Aftab Nazir; Soon Aik Chew; Alexey Milenin; Efrain Altamirano-Sanchez; Geert Schoofs; Johan Albert; Farid Sebai; Emma Vecchio; V. Paraschiv; Wilfried Vandervorst; Sun-Ghil Lee; Nadine Collaert; Pierre Fazan; Naoto Horiguchi; Aaron Thean
In this paper, a low-cost and low-leakage gate-first high-k metal-gate CMOS integration compatible with the high thermal budget used in a 2× node dynamic random access memory process flow is reported. The metal inserted polysilicon stack is based on HfO2 coupled with Al2O3 capping for pMOS devices, and with a TiN/Mg/TiN stack together with As ion implantation for nMOS. It is demonstrated that n and pMOS performance of 400 and 200 μA/μm can be obtained for an OFF-state current of 10-10 A/μm, while maintaining gate and junction leakages compatible with low-power applications. Reliability and matching properties are aligned with logic gate-stacks, and the proposed solution is outperforming the La-cap-based solutions in terms of thermal stability.
international electron devices meeting | 2013
Yuichiro Sasaki; Ludovic Godet; T. Chiarella; David P. Brunco; Tyler Rockwell; J. W. Lee; B. Colombeau; Mitsuhiro Togo; Soon Aik Chew; G. Zschaetszch; Kyung Bong Noh; A. De Keersgieter; G. Boccardi; Min-Soo Kim; Geert Hellings; P. Martin; Wilfried Vandervorst; Aaron Thean; Naoto Horiguchi
We demonstrate a novel photoresist-compatible FinFET doping technique that combines the advantages of deposition and implantation. Energy and deposition thickness optimization for the Ion Assisted Deposition and Doping (IADD) process provides excellent doping of nMOS extensions, thus reducing external resistance REXT. On current ION is improved by 6-8% for LG of 26-30 nm and by 15% for LG of 20 nm, with better SCE and DIBL.
international electron devices meeting | 2015
Yuichiro Sasaki; Romain Ritzenthaler; Yosuke Kimura; D. De Roest; Xiaoping Shi; A. De Keersgieter; Min-Soo Kim; Soon Aik Chew; S. Kubicek; Tom Schram; Yoshiaki Kikuchi; Steven Demuynck; A. Veloso; Wilfried Vandervorst; Naoto Horiguchi; D. Mocuta; Anda Mocuta; A. V-Y. Thean
We demonstrate a NMOS Si Bulk-FinFET with extension doped by Phosphorus doped Silicate Glass (PSG). Highly doped PSG (6e21 cm<sup>-3</sup>) was used as a diffusion source. SiO<sub>2</sub> cap on PSG decreased sheet resistance (Rs) due to less out diffusion of P. Even when thin SiO<sub>2</sub> exists at the interface between Si and PSG, P diffused from PSG into Si. Thanks to the high etch rate of the PSG/SiO<sub>2</sub> cap stack after drive-in anneal, the PSG/SiO<sub>2</sub> cap was successfully removed by HF with minimum removal of STI and gate hard mask oxide. PSG provides damage free and uniform sidewall doping to fin. On current I<sub>ON</sub> is improved by 20% for L<sub>G</sub> in the 30-24 nm range, with similar I<sub>OFF</sub> and better DIBL compared to P ion implanted reference.
Japanese Journal of Applied Physics | 2013
A. Veloso; Soon Aik Chew; Yuichi Higuchi; Lars-Ake Ragnarsson; Eddy Simoen; Tom Schram; Thomas Witters; Annemie Van Ammel; Harold Dekkers; Hilde Tielens; K. Devriendt; Nancy Heylen; F. Sebaai; S. Brus; Paola Favia; Jef Geypen; Hugo Bender; A. Phatak; Michael S. Chen; Xinliang Lu; Seshadri Ganguli; Yu Lei; Wei Tang; Xinyu Fu; Srinivas Gandikota; Atif Noori; Adam Brand; Naomi Yoshida; Aaron Thean; Naoto Horiguchi
This work reports on aggressively scaled replacement metal gate, high-k last devices (RMG-HKL), exploring several options for effective work function (EWF) engineering, and targeting logic high-performance and low-power applications. Tight low-threshold voltage (VT) distributions for scaled NMOS devices are obtained by controlled TiN/TiAl-alloying, either by using RF-physical vapor deposition (RF-PVD) or atomic layer deposition (ALD) for TiN growth. The first technique allows optimization of the TiAl/TiN thicknesses at the bottom of gate trenches while maximizing the space to be filled with a low-resistance metal; using ALD minimizes the occurrence of preferential paths, at gate sidewalls, for Al diffusion into the high-k dielectric, reducing gate leakage (JG). For multi-gate fin field-effect transistors (FinFETs) which require smaller EWF shifts from mid-gap for low-VT: 1) conformal, lower-JG ALD-TiN/TaSiAl; and 2) Al-rich ALD-TiN by controlled Al diffusion from the fill-metal are demonstrated to be promising candidates. Comparable bias temperature instability (BTI), improved noise behavior, and slightly reduced equivalent oxide thickness (EOT) are measured on Al-rich EWF-metal stacks.
symposium on vlsi technology | 2012
A. Veloso; Yuichi Higuchi; Soon Aik Chew; K. Devriendt; Lars-Ake Ragnarsson; F. Sebaai; Tom Schram; S. Brus; Emma Vecchio; Kristof Kellens; Erika Rohr; Geert Eneman; Eddy Simoen; Moonju Cho; V. Paraschiv; Y. Crabbe; Xiaoping Shi; Hilde Tielens; A. Van Ammel; Harold Dekkers; Paola Favia; Jef Geypen; Hugo Bender; A. Phatak; J. del Agua Borniquel; Kun Xu; M. Allen; C. Liu; T. Xu; W. S. Yoo
We report on aggressively scaled RMG-HKL devices, with tight low-V<sub>T</sub> distributions [σ(V<sub>Tsat</sub>) ~ 29mV (PMOS), ~ 49mV (NMOS) at L<sub>gate</sub>~35nm] achieved through controlled EWF-metal alloying for NMOS, and providing an in-depth overview of its enabling features: 1) physical mechanisms, model supported by TCAD simulations and analysis techniques such as TEM, EDS; 2) process optimizations implementation: oxygen sources reduction, control of RF-PVD TiAl/TiN ratio and reduced H<sub>gate</sub>, also impacting stress induced in the channel. Additional key features: 1) Al vs. W as fill-metal, with careful liner/barrier materials selection and tuning yielding well-behaved devices with tight R<sub>gate</sub> distributions down to L<sub>gate</sub>~20nm, and enabling both PMOS and NMOS low-VT values for high aspect-ratio gates (H<sub>gate</sub>~60nm, L<sub>gate</sub>≥30nm); 2) wet-etch vs. siconi clean for dummy-dielectric removal, with HfO<sub>2</sub> post-deposition N<sub>2</sub>-anneal resulting in substantial BTI improvement without EOT or low-field/peak mobility penalty, and good noise response.