Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where M. Yoshimi is active.

Publication


Featured researches published by M. Yoshimi.


IEEE Transactions on Electron Devices | 1987

A study of photon emission from n-channel MOSFET's

Akira Toriumi; M. Yoshimi; Masao Iwase; Y. Akiyama; Kenji Taniguchi

It is known that an n-channel MOSFET, operating in the saturation region, is accompanied by visible light emission. The spectral distribution of this emitted light is reported in this paper for the first time. It behaves as exp (-α . hv) under various bias conditions (α: constant); the energy state of hot electrons is described as a Maxwell-Boltzmann distribution. The hot-electron temperature in an n-channel MOSFET is experimentally evaluated from the photon spectrum analysis. As compared with the electric field strength calculated by two-dimensional simulation, the hot-electron temperature is found to be determined as a function of the electric field strength in the drain avalanche region.


IEEE Transactions on Electron Devices | 1989

Two-dimensional simulation and measurement of high-performance MOSFETs made on a very thin SOI film

M. Yoshimi; Hiroaki Hazama; Minoru Takahashi; S. Kambayashi; Tetsunori Wada; Hiroyuki Tango

Thinning effects on the device characteristics of silicon-on-insulator (SOI) MOSFETs are discussed. Two-dimensional/two-carrier device simulation revealed the following advantages. An n-channel MOSFET with 500-AA-SOI thickness exhibited a high-punchthrough resistance as well as an improved subthreshold swing down to a deep submicrometer region, even if the film was nearly intrinsic. A capacitance coupling model has been proposed to explain these subthreshold characteristics. The kink elimination effect, which was attributed to a significantly reduced hole density in the SOI film, was reproduced. The low-field channel mobility exhibited a significant increase, which was ascribed to a decrease in the vertical electric field. Moreover, the current-overshoot phenomenon associated with the switching operation was suppressed. Excess holes recombine with electrons quickly after the gate turn-on, bringing about a stabilized potential in the SOI substrate. Experiments were also carried out to verify the simulation. >


IEEE Transactions on Electron Devices | 1990

Analysis of the drain breakdown mechanism in ultra-thin-film SOI MOSFETs

M. Yoshimi; Minoru Takahashi; Tetsunori Wada; Kouichi Kato; Shigeru Kambayashi; Masato Kemmochi; K. Natori

The drain breakdown phenomenon in ultra-thin-film (silicon-on-insulator) SOI MOSFETs has been studied. Two-dimensional simulation revealed that the thinning of the SOI film brings about an increase in the drain electric field due to the two-dimensional effect, causing a significant lowering in the drain breakdown voltage, as has been commonly seen in ultra-thin-film SOI MOSFETs. The simulation also showed that the lowered drain breakdown voltage recovered almost to its original value when the drain SOI thickness was restored, suggesting that the drain structure, rather than the source, plays a major role in determining the drain breakdown voltage. Experiments using an asymmetric device structure supported this hypothesis, showing that the breakdown voltage was mostly dependent on the drain structure, the initial potential barrier height at the source-SOI-body junction being only a minor factor. Transient simulation was also carried out to investigate the detailed breakdown process, showing that holes accumulate near the source-SOI-body junction at a high drain bias, eventually forward-biasing the junction. These results indicate that a careful drain design and/or proper choice of the SOI thickness as well as the supply voltage are quite important for realizing high performance of ultra-thin-film SOI MOSFETs. >


international solid-state circuits conference | 1997

A 0.5 V 200 MHz 1-stage 32 b ALU using a body bias controlled SOI pass-gate logic

Tsuneaki Fuse; Yukihito Oowaki; Takashi Yamada; M. Kamoshida; A. Ohta; Tomoaki Shino; S. Kawanaka; Mamoru Terauchi; T. Yoshida; G. Matsubara; S. Yoshioka; Shigeyoshi Watanabe; M. Yoshimi; Kazuya Ohuchi; S. Manabe

SOI CMOS with gate-body connection (DTMOS) and body bias controlled SOI pass-gate logic (BCSOI pass-gate) take advantage of individually isolated SOI device active area and reduce threshold voltage by controlling each device body bias. Hence, they enjoy higher speed than circuits based on fixed low threshold voltage. The direct body bias control used in previous work suffers from leakage current at supply voltage higher than 0.8V due to drain-body junction leakage. A practical circuit technology that offers the highest speed, lowest operation voltage and stable operation under wide supply voltage demonstrates performance with an ALU macro using this technology.


IEEE Transactions on Electron Devices | 2000

A novel lateral bipolar transistor with 67 GHz f/sub max/ on thin-film SOI for RF analog applications

Hideaki Nii; Takashi Yamada; Kazumi Inoh; Tomoaki Shino; Shigeru Kawanaka; M. Yoshimi; Y. Katsumata

In this paper, a novel lateral bipolar transistor on thin film silicon-on-insulator (SOI) is presented. With a small emitter size of 0.12/spl times/3.0 /spl mu/m/sup 2/, low base resistance of 270 /spl Omega/ due to a novel Co silicided base electrode and low base-collector parasitic capacitances of 1.4 fF due to SOI material, it achieves the highest f/sub max/ of 67 GHz among SOI bipolar transistors. Also, the low emitter-base capacitance of 1.5 fF and the low collector-substrate capacitance of 2.5 fF are realized. The transistor has a simple structure, which is fabricated with simplified processes without any new sophisticated technologies, excluding trench isolation and epitaxial base used in current bipolar transistors. This can lower the fabrication cost of transistors. We have demonstrated the possibility of lateral bipolar transistor on thin film SOI as next-generation device for RF analog applications.


international electron devices meeting | 1994

Technology trends of silicon-on-insulator-its advantages and problems to be solved

M. Yoshimi; Mamoru Terauchi; Atsushi Murakoshi; Minoru Takahashi; Kazuya Matsuzawa; Naoyuki Shigyo; Yukihiro Ushiku

Recent progress in SOI technology is reviewed and problems which need be solved are discussed. Emphasis is placed on the substrate floating effect, for which the bandgap engineering method is proposed for the first time. It is demonstrated that Si-Ge formation in the source region can improve the drain breakdown voltage significantly.<<ETX>>


IEEE Transactions on Electron Devices | 1997

Suppression of the floating-body effect in SOI MOSFET's by the bandgap engineering method using a Si/sub 1-x/Ge/sub x/ source structure

M. Yoshimi; Mamoru Terauchi; Osamu Arisumi; Atsushi Murakoshi; Kazuya Matsuzawa; Naoyuki Shigyo; Shiro Takeno; Mitsuhiro Tomita; Ken Suzuki; Yukihiro Ushiku; Hiroyuki Tango

The bandgap engineering method using a SiGe source structure is presented as a means to suppress the floating-body effect in SOI MOSFETs. Experiments using Ge implantation are carried out to form a narrow-bandgapped SiGe layer in the source region. It has been confirmed that Ge-implanted SIMOX exhibited a 0.1 eV bandgap narrowing with a relatively low Ge-dosage of 10/sup 16/ cm/sup -2/. The fabricated N-type SOI-MOSFETs exhibited suppressed parasitic bipolar effects, such as improvement of the drain breakdown voltage or latch voltage, and suppression of abnormal subthreshold slope. Advantages over other conventional methods are also discussed, indicating that the bandgap engineering provides a practical method to suppress the floating-body effect.


international solid-state circuits conference | 1996

0.5 V SOI CMOS pass-gate logic

Tsuneaki Fuse; Yukihito Oowaki; Mamoru Terauchi; Shigeyoshi Watanabe; M. Yoshimi; Kazuya Ohuchi; J. Matsunaga

Demand for low-power ULSIs for mobile electronic equipment is increasing rapidly. To reduce power consumption, lower operating voltage and minimized device size (or count) is essential. To lower the actual threshold voltage and lower the operation voltage, SOI MOSFET with gate-body connection is proposed. However, the circuit architecture that affords the maximum advantage of the body controlled SOI MOSFET has not yet been reported. The SOI CMOS pass-gate logic described here offers the lowest operation voltage and reduced transistor dimensions. In this logic the body of the SOI pass-gate is connected to the input signal given to the gate. Low threshold voltage for the onstate pass-gate and high threshold voltage for the off-state passgate is realized, and the increase in the threshold voltage due to the body-effect is suppressed. Two types of buffer suitable for SOI pass-gate logic are examined.


IEEE Electron Device Letters | 1993

High-performance 0.10- mu m CMOS devices operating at room temperature

Masao Iwase; Tomohisa Mizuno; Minoru Takahashi; Hiromi Niiyama; M. Fukumoto; K. Ishida; Satoshi Inaba; Y. Takigami; A. Sanda; Akira Toriumi; M. Yoshimi

The authors have fabricated 0.10- mu m gate-length CMOS devices that operate with high speed at room temperature. Electron-beam lithography was used to define 0.10- mu m polysilicon gate patterns. Surface-channel type p- and n-channel MOSFETs were fabricated using an LDD structure combined with a self-aligned TiSi/sub 2/ process. Channel doping was optimized so as to suppress punchthrough as well as to realize high transconductance and low drain junction capacitance. The fabricated 0.10- mu m CMOS devices have exhibited high transconductance as well as a well-suppressed band-to-band tunneling current, although the short-channel effect occurred somewhat. The operation of a 0.10- mu m gate-length CMOS ring oscillator has been demonstrated. The operation speed was 27.7 ps/gate for 2.5 V at room temperature, which is the fastest CMOS switching ever reported.<<ETX>>


IEEE Transactions on Electron Devices | 1997

Suppression of the floating-body effect in partially-depleted SOI MOSFETs with SiGe source structure and its mechanism

Osamu Arisumi; M. Yoshimi

SiGe layers were formed in source regions of partially-depleted 0.25-/spl mu/m SOI MOSFETs by Ge implantation, and the floating-body effect was investigated for this SiGe source structure. It is found that the increase of the Ge implantation dosage suppresses kinks in I/sub d/-V/sub d/ characteristics and that the kinks disappear for devices with a Ge dose of 3/spl times/10/sup 16/ cm/sup -2/. The lowering of the drain breakdown voltage and the anomalous decrease of the subthreshold swing are also suppressed with this structure. It is confirmed that this suppression effect originates from the decrease of the current gain for source/channel/drain lateral bipolar transistors (LBJTs) with the SiGe source structure. The temperature dependence of the base current indicates that the decrease of the current gain is ascribed to the bandgap narrowing of the source region.

Collaboration


Dive into the M. Yoshimi's collaboration.

Researchain Logo
Decentralizing Knowledge