Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tsutomu Tezuka is active.

Publication


Featured researches published by Tsutomu Tezuka.


Applied Physics Letters | 2001

Fabrication of strained Si on an ultrathin SiGe-on-insulator virtual substrate with a high-Ge fraction

Tsutomu Tezuka; Naoharu Sugiyama; Shinichi Takagi

A promising fabrication method for a Si1−xGex-on-insulator (SGOI) virtual substrate and evaluation of strain in the Si layer on this SGOI substrate are presented. A 9-nm-thick SGOI layer with x=0.56 was formed by dry oxidation after epitaxial growth of Si0.92Ge0.08 on a silicon-on-insulator substrate. During the oxidation, Ge atoms were rejected from the surface oxide layer and condensed in the remaining SGOI layer, which was partially relaxed without introducing a significant amount of dislocations. It is found from the analysis of the Raman spectra that the strained Si layer grown on the SGOI layer involves a tensile strain of 1%. This strained Si on the SGOI structure is applicable to sub-100-nm metal–oxide–semiconductor field-effect transistors.


IEEE Transactions on Electron Devices | 2008

Carrier-Transport-Enhanced Channel CMOS for Improved Power Consumption and Performance

Shinichi Takagi; Toshifumi Iisawa; Tsutomu Tezuka; Toshinori Numata; Shu Nakaharai; Norio Hirashita; Yoshihiko Moriyama; Koji Usuda; Eiji Toyoda; Sanjeewa Dissanayake; Masato Shichijo; Ryosho Nakane; Satoshi Sugahara; Mitsuru Takenaka; Naoharu Sugiyama

An effective way to reduce supply voltage and resulting power consumption without losing the circuit performance of CMOS is to use CMOS structures using high carrier mobility/velocity. In this paper, our recent approaches in realizing these carrier-transport-enhanced CMOS will be reviewed. First, the basic concept on the choice of channels for increasing on current of MOSFETs, the effective-mass engineering, is introduced from the viewpoint of both carrier velocity and surface carrier concentration under a given gate voltage. Based on this understanding, critical issues, fabrication techniques, and the device performance of MOSFETs using three types of channel materials, Si (SiGe) with uniaxial strain, Ge-on-insulator (GOI), and III-V semiconductors, are presented. As for the strained devices, the importance of uniaxial strain, as well as the combination with multigate structures, is addressed. A novel subband engineering for electrons on (110) surfaces is also introduced. As for GOI MOSFETs, the versatility of the Ge condensation technique for fabricating a variety of Ge-based devices is emphasized. In addition, as for III-V semiconductor MOSFETs, advantages and disadvantages on low effective mass are examined through simple theoretical calculations.


Applied Physics Letters | 2003

Characterization of 7-nm-thick strained Ge-on-insulator layer fabricated by Ge-condensation technique

Shu Nakaharai; Tsutomu Tezuka; Naoharu Sugiyama; Yoshihiko Moriyama; Shinichi Takagi

A strained Ge-on-insulator (GOI) structure with a 7-nm-thick Ge layer was fabricated for applications to high-speed transistors. The GOI layer was formed by thermal oxidation of a strained SiGe layer grown epitaxially on a silicon-on-insulator (SOI) wafer. In transmission electron microscopy measurements, the obtained GOI layer exhibited a single-crystal structure with the identical orientation to an original SOI substrate and a smooth Ge/SiO2 interface. The rms of the surface roughness of the GOI layer was evaluated to be 0.4 nm by atomic force microscopy. The residual Si fraction in the GOI layer was estimated to be lower than the detection limit of Raman spectroscopy of 0.5% and also than the electron energy loss spectroscope measurements of 3%. It was found that the obtained GOI layer was compressively strained with a strain of 1.1%, which was estimated by the Raman spectroscopy. Judging from the observed crystal quality and the strain value, this technique is promising for fabrication of high-mobilit...


Japanese Journal of Applied Physics | 2001

A Novel Fabrication Technique of Ultrathin and Relaxed SiGe Buffer Layers with High Ge Fraction for Sub-100 nm Strained Silicon-on-Insulator MOSFETs

Tsutomu Tezuka; Naoharu Sugiyama; Tomohisa Mizuno; Masamichi Suzuki; Shinichi Takagi

A novel fabrication technique for relaxed and thin SiGe layers on buried oxide (BOX) layers, i.e., SiGe on insulator (SGOI), with a high Ge fraction is proposed and demonstrated for application to strained-Si metal-oxide-semiconductor field effect transistors (MOSFETs). This fabrication technique is based on the high-temperature oxidation of the SGOI layers with a lower Ge fraction. It is found that Ge atoms are rejected from the oxide and condensed in the SGOI layers. The conservation of the total amount of Ge atoms in the SGOI layer is confirmed by structural and compositional analyses of dry-oxidized SGOI layers at 1050°C of different initial thicknesses and oxidation times. Using this technique, a 16-nm-thick SGOI layer with the Ge fraction as high as 0.57 is successfully obtained. The Ge profiles across the SGOI layers are quite uniform and the layers are almost completely relaxed. Significant dislocation generation in the SGOI layer is not observed after the oxidation. This is a promising technique for application to sub-100 nm fully-depleted silicon-on-insulator (SOI) MOSFETs with strained-Si or SiGe channels.


IEEE Electron Device Letters | 2005

High mobility Ge-on-insulator p-channel MOSFETs using Pt germanide Schottky source/drain

Tatsuro Maeda; Keiji Ikeda; Shu Nakaharai; Tsutomu Tezuka; Naoharu Sugiyama; Yoshihiko Moriyama; Shinichi Takagi

We demonstrate, for the first time, successful operation of Schottky-barrier source/drain (S/D) germanium-on-insulator (GOI) MOSFETs, where a buried oxide and a silicon substrate are used as a gate dielectric and a bottom gate electrode, respectively. Excellent performance of p-type MOSFETs using Pt germanide S/D is presented in the accumulation mode. The hole mobility enhancement of 50%/spl sim/40% against the universal hole mobility of Si MOSFETs is obtained for the accumulated GOI channel with the SiO/sub 2/-Ge interface.


symposium on vlsi technology | 2002

High-performance strained Si-on-insulator MOSFETs by novel fabrication processes utilizing Ge-condensation technique

Tsutomu Tezuka; Naoharu Sugiyama; Tomohisa Mizuno; Shinichi Takagi

Strained SOI (SSOI)-nMOSFETs with enhanced mobility up to 67% were fabricated on a strain-relaxed SiGe-on-insulator substrate using a novel Ge-condensation technique. This method, using only standard Si processes, realizes smooth SSOI surfaces without using SIMOX, wafer bonding, surface polishing or any other special processes. Relaxation ratio of the SiGe substrate was varied from 0% to 100%, resulting in the control of threshold voltage. The Ge-condensation process using conventional SOI substrates is an attractive technique for fabrication of multi-threshold SSOI-CMOS circuits with high current drive.


IEEE Electron Device Letters | 2005

High-mobility strained SiGe-on-insulator pMOSFETs with Ge-rich surface channels fabricated by local condensation technique

Tsutomu Tezuka; Shu Nakaharai; Yoshihiko Moriyama; Naoharu Sugiyama; Shinichi Takagi

A new approach to form strained SiGe-on-insulator (SGOI) channel transistors, allowing fabrication of MOSFETs with very high Ge fraction in selected areas on a silicon-on-insulator substrate, is demonstrated. This method consists of epitaxial growth of an SiGe layer with a low Ge fraction and local oxidation processes. An obtained SGOI pMOSFET with a Ge fraction of 0.93 exhibits up to a tenfold enhancement in mobility. It is also found that MOSFETs having strained SGOI channels with thicknesses of less than 5 nm exhibit hole-mobility enhancement factors of over two. These results indicate that the local SGOI channels fabricated by the proposed technique are promising for implementation of high-mobility SiGe or Ge-channel MOSFETs in system-on-chip (SoC) devices.


international electron devices meeting | 2003

Channel structure design, fabrication and carrier transport properties of strained-Si/SiGe-on-insulator (strained-SOI) MOSFETs

Shinichi Takagi; Tomohisa Mizuno; Tsutomu Tezuka; Naoharu Sugiyama; Toshinori Numata; Koji Usuda; Yoshihiko Moriyama; Shu Nakaharai; Junji Koga; Akihito Tanabe; Norio Hirashita; T. Maeda

This paper reviews the current critical issues regarding the device design of strained-Si MOSFETs and demonstrates that strained-Si-on-insulator (strained-SOI) structures can effectively solve these problems. The advantages, characteristics and challenges of strained-SOI CMOS technology are presented, on the basis of our recent results. Furthermore, a future possible direction of channel engineering using strained-Si/SiGe structures, into the deep sub-100 nm regime, is addressed.


IEEE Transactions on Electron Devices | 2003

High-performance strained-SOI CMOS devices using thin film SiGe-on-insulator technology

Tomohisa Mizuno; Naoharu Sugiyama; Tsutomu Tezuka; Toshinori Numata; Shinichi Takagi

We have developed high-performance strained-SOI CMOS devices on thin film relaxed SiGe-on-insulator (SGOI) substrates with high Ge content (25%) fabricated by the combination of separation-by-implanted-oxygen (SIMOX) and internal-thermal-oxidation (ITOX) techniques without using SiGe buffer structures. The maximum enhancement of electron and hole mobilities of strained-SOI devices against the universal mobility amounts to 85 and 53%, respectively. On the other hand, we have also observed the reduction of carrier mobility in a thinner strained-Si layer or at higher vertical electric field conditions. For the first time, we have demonstrated a high-speed CMOS ring-oscillator using strained-SOI devices, and its improvement amounts to 63% at the supply voltage of 1.5 V, compared to control-SOI CMOS.


international electron devices meeting | 1999

High performance strained-Si p-MOSFETs on SiGe-on-insulator substrates fabricated by SIMOX technology

Tomohisa Mizuno; Shinichi Takagi; Naoharu Sugiyama; Junji Koga; Tsutomu Tezuka; Koji Usuda; Tetsuo Hatakeyama; Atsushi Kurobe; Akira Toriumi

We have proposed a new MOSFET structure, strained-Si/Si/sub 0.9/Ge/sub 0.1/-on-Insulator (SSGOI) MOSFETs applicable to the sub-100 nm generation. This SSGOI structure was successfully fabricated by the combination of SIMOX technology and the Si re-growth technique. The strained-Si in SSGOI was found to have good crystal quality and very flat interfaces. SSGOI p-MOSFETs exhibited good FET characteristics. It was demonstrated, for the first time, that the hole mobility of the SSGOI p-MOSFETs is higher that of the universal mobility of conventional Si p-MOSFETs.

Collaboration


Dive into the Tsutomu Tezuka's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yoshihiko Moriyama

National Institute of Advanced Industrial Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Toshifumi Irisawa

National Institute of Advanced Industrial Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Koji Usuda

National Institute of Advanced Industrial Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Shu Nakaharai

National Institute of Advanced Industrial Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge